You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
102 lines
3.8 KiB
102 lines
3.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/math/maxouting.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace math {
|
|
|
|
// All tensors are in NCHW format, and the groups must be greater than 1
|
|
template <typename T>
|
|
class MaxOutFunctor<platform::CPUDeviceContext, T> {
|
|
public:
|
|
void operator()(const platform::CPUDeviceContext& context,
|
|
const framework::Tensor& input, framework::Tensor* output,
|
|
int groups) {
|
|
const int batch_size = input.dims()[0];
|
|
const int input_height = input.dims()[2];
|
|
const int input_width = input.dims()[3];
|
|
const int output_channels = output->dims()[1];
|
|
int fea_size = input_height * input_width;
|
|
// c_size means the output size of each sample
|
|
int c_size = fea_size * output_channels;
|
|
const T* input_data = input.data<T>();
|
|
T* output_data = output->mutable_data<T>(context.GetPlace());
|
|
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
int new_bindex = c_size * i;
|
|
for (int c = 0; c < output_channels; ++c) {
|
|
int new_cindex = fea_size * c;
|
|
for (int f = 0; f < fea_size; ++f) {
|
|
T ele = static_cast<T>(-FLT_MAX);
|
|
for (int ph = 0; ph < groups; ++ph) {
|
|
T x = input_data[(new_bindex + new_cindex) * groups +
|
|
ph * fea_size + f];
|
|
ele = ele > x ? ele : x;
|
|
}
|
|
output_data[(new_bindex + new_cindex + f)] = ele;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <class T>
|
|
class MaxOutGradFunctor<platform::CPUDeviceContext, T> {
|
|
public:
|
|
void operator()(const platform::CPUDeviceContext& context,
|
|
const framework::Tensor& input, framework::Tensor* input_grad,
|
|
const framework::Tensor& output,
|
|
const framework::Tensor& output_grad, int groups) {
|
|
const int batch_size = input.dims()[0];
|
|
const int input_height = input.dims()[2];
|
|
const int input_width = input.dims()[3];
|
|
const int output_channels = output.dims()[1];
|
|
int fea_size = input_height * input_width;
|
|
const T* input_data = input.data<T>();
|
|
const T* output_data = output.data<T>();
|
|
const T* output_grad_data = output_grad.data<T>();
|
|
T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
|
|
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
int blen = fea_size * output_channels * i;
|
|
for (int c = 0; c < output_channels; ++c) {
|
|
int clen = fea_size * c;
|
|
for (int f = 0; f < fea_size; ++f) {
|
|
int input_idx0 = (blen + clen) * groups + f;
|
|
bool continue_match = true;
|
|
int output_idx = blen + clen + f;
|
|
for (int g = 0; g < groups && continue_match; ++g) {
|
|
int input_idx = input_idx0 + fea_size * g;
|
|
if (input_data[input_idx] == output_data[output_idx]) {
|
|
input_grad_data[input_idx] += output_grad_data[output_idx];
|
|
continue_match = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template class MaxOutGradFunctor<platform::CPUDeviceContext, float>;
|
|
template class MaxOutGradFunctor<platform::CPUDeviceContext, double>;
|
|
template class MaxOutFunctor<platform::CPUDeviceContext, float>;
|
|
template class MaxOutFunctor<platform::CPUDeviceContext, double>;
|
|
|
|
} // namespace math
|
|
} // namespace operators
|
|
} // namespace paddle
|