You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
101 lines
3.6 KiB
101 lines
3.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/split_byref_op.h"
|
|
#include "paddle/fluid/operators/split_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
using framework::Tensor;
|
|
|
|
class SplitByrefOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of SplitOp should not be null.");
|
|
PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL,
|
|
"Outputs(Out) of SplitOp should not be empty.");
|
|
auto in_dims = ctx->GetInputDim("X");
|
|
auto outs_names = ctx->Outputs("Out");
|
|
size_t num = static_cast<size_t>(ctx->Attrs().Get<int>("num"));
|
|
std::vector<int> sections = static_cast<std::vector<int>>(
|
|
ctx->Attrs().Get<std::vector<int>>("sections"));
|
|
const size_t outs_number = outs_names.size();
|
|
std::vector<framework::DDim> outs_dims;
|
|
outs_dims.reserve(outs_number);
|
|
|
|
if (num > 0) {
|
|
int64_t in_axis_dim = in_dims[0];
|
|
PADDLE_ENFORCE_EQ(in_axis_dim % num, 0,
|
|
"tensor split does not result"
|
|
" in an equal division");
|
|
size_t out_axis_dim = in_axis_dim / num;
|
|
for (size_t i = 0; i < outs_number; ++i) {
|
|
auto dim = in_dims;
|
|
dim[0] = out_axis_dim;
|
|
outs_dims.push_back(dim);
|
|
}
|
|
} else if (sections.size() > 0) {
|
|
PADDLE_ENFORCE_EQ(sections.size(), outs_number,
|
|
"tensor split sections size"
|
|
"should be equal to output size.");
|
|
for (size_t i = 0; i < outs_number; ++i) {
|
|
auto dim = in_dims;
|
|
dim[0] = sections[i];
|
|
outs_dims.push_back(dim);
|
|
}
|
|
}
|
|
ctx->SetOutputsDim("Out", outs_dims);
|
|
}
|
|
};
|
|
|
|
class SplitByrefOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor) Input tensor of the split operator.");
|
|
AddOutput("Out", "(Tensor) Output tensors of the split operator.")
|
|
.AsDuplicable();
|
|
AddComment(R"DOC(
|
|
SplitByref operator
|
|
|
|
Split source tensor to sevaral tensors by axis 0. No copy in this operator
|
|
is performed, output tensor shares the same blocks of memory.
|
|
)DOC");
|
|
AddAttr<std::vector<int>>("sections",
|
|
"(vector<int>) "
|
|
"the length of each output along the "
|
|
"specified axis.")
|
|
.SetDefault(std::vector<int>{});
|
|
AddAttr<int>("num",
|
|
"(int, default 0)"
|
|
"Number of sub-tensors. This must evenly divide "
|
|
"Input.dims()[axis]")
|
|
.SetDefault(0);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
// NOTE: concat op default axis must be 0!
|
|
USE_CPU_ONLY_OP(concat);
|
|
|
|
REGISTER_OPERATOR(split_byref, ops::SplitByrefOp, ops::SplitByrefOpMaker,
|
|
ops::SplitGradMaker);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
split_byref, ops::SplitByrefOpKernel<paddle::platform::CPUPlace, float>);
|