You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
5.2 KiB
154 lines
5.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "LayerGradUtil.h"
|
|
#include "paddle/math/MathUtils.h"
|
|
#include "paddle/testing/TestUtil.h"
|
|
|
|
void setPoolConfig(paddle::TestConfig* config,
|
|
paddle::PoolConfig* pool,
|
|
const string& poolType) {
|
|
(*config).biasSize = 0;
|
|
(*config).layerConfig.set_type("pool");
|
|
(*config).layerConfig.set_num_filters(1);
|
|
|
|
int kw = 2, kh = 2;
|
|
int pw = 0, ph = 0;
|
|
int sw = 2, sh = 2;
|
|
pool->set_pool_type(poolType);
|
|
pool->set_channels(2);
|
|
pool->set_size_x(kw);
|
|
pool->set_size_y(kh);
|
|
pool->set_start(0);
|
|
pool->set_padding(pw);
|
|
pool->set_padding_y(ph);
|
|
pool->set_stride(sw);
|
|
pool->set_stride_y(sh);
|
|
|
|
int ow =
|
|
paddle::outputSize(pool->img_size(), kw, pw, sw, /* caffeMode */ false);
|
|
int oh =
|
|
paddle::outputSize(pool->img_size_y(), kh, ph, sh, /* caffeMode */ false);
|
|
pool->set_output_x(ow);
|
|
pool->set_output_y(oh);
|
|
}
|
|
|
|
paddle::LayerPtr doOneUpsampleTest(const paddle::MatrixPtr& inputMat,
|
|
const string& poolType,
|
|
bool use_gpu,
|
|
real* tempGradData) {
|
|
/* prepare maxPoolWithMaskLayer */
|
|
paddle::TestConfig config;
|
|
config.inputDefs.push_back({paddle::INPUT_DATA, "layer_0", 128, 0});
|
|
paddle::LayerInputConfig* input = config.layerConfig.add_inputs();
|
|
paddle::PoolConfig* pool = input->mutable_pool_conf();
|
|
|
|
pool->set_img_size(8);
|
|
pool->set_img_size_y(8);
|
|
setPoolConfig(&config, pool, "max-pool-with-mask");
|
|
config.layerConfig.set_size(pool->output_x() * pool->output_y() *
|
|
pool->channels());
|
|
|
|
config.layerConfig.set_name("MaxPoolWithMask");
|
|
|
|
std::vector<paddle::DataLayerPtr> dataLayers;
|
|
paddle::LayerMap layerMap;
|
|
vector<paddle::Argument> datas;
|
|
|
|
initDataLayer(config,
|
|
&dataLayers,
|
|
&datas,
|
|
&layerMap,
|
|
"MaxPoolWithMask",
|
|
1,
|
|
false,
|
|
use_gpu);
|
|
|
|
dataLayers[0]->getOutputValue()->copyFrom(*inputMat);
|
|
|
|
FLAGS_use_gpu = use_gpu;
|
|
std::vector<paddle::ParameterPtr> parameters;
|
|
paddle::LayerPtr maxPoolingWithMaskOutputLayer;
|
|
initTestLayer(config, &layerMap, ¶meters, &maxPoolingWithMaskOutputLayer);
|
|
maxPoolingWithMaskOutputLayer->forward(paddle::PASS_GC);
|
|
|
|
/* prepare the upsample layer */
|
|
paddle::LayerConfig upsampleLayerConfig;
|
|
upsampleLayerConfig.set_type("upsample");
|
|
paddle::LayerInputConfig* input1 = upsampleLayerConfig.add_inputs();
|
|
upsampleLayerConfig.add_inputs();
|
|
|
|
paddle::UpsampleConfig* upsampleConfig = input1->mutable_upsample_conf();
|
|
upsampleConfig->set_scale(2);
|
|
paddle::ImageConfig* imageConfig = upsampleConfig->mutable_image_conf();
|
|
imageConfig->set_channels(2);
|
|
imageConfig->set_img_size(4);
|
|
imageConfig->set_img_size_y(4);
|
|
upsampleLayerConfig.set_size(2 * 8 * 8);
|
|
upsampleLayerConfig.set_name("upsample");
|
|
|
|
for (size_t i = 0; i < 2; i++) {
|
|
paddle::LayerInputConfig& inputTemp =
|
|
*(upsampleLayerConfig.mutable_inputs(i));
|
|
inputTemp.set_input_layer_name("MaxPoolWithMask");
|
|
}
|
|
|
|
paddle::LayerPtr upsampleLayer;
|
|
paddle::ParameterMap parameterMap;
|
|
upsampleLayer = paddle::Layer::create(upsampleLayerConfig);
|
|
layerMap[upsampleLayerConfig.name()] = upsampleLayer;
|
|
upsampleLayer->init(layerMap, parameterMap);
|
|
upsampleLayer->setNeedGradient(true);
|
|
upsampleLayer->forward(paddle::PASS_GC);
|
|
upsampleLayer->getOutputGrad()->copyFrom(tempGradData, 128);
|
|
upsampleLayer->backward();
|
|
|
|
return upsampleLayer;
|
|
}
|
|
|
|
TEST(Layer, maxPoolingWithMaskOutputLayerFwd) {
|
|
bool useGpu = false;
|
|
paddle::MatrixPtr inputMat;
|
|
paddle::MatrixPtr inputGPUMat;
|
|
paddle::MatrixPtr tempGradMat;
|
|
|
|
inputMat = paddle::Matrix::create(1, 128, false, useGpu);
|
|
inputMat->randomizeUniform();
|
|
|
|
tempGradMat = paddle::Matrix::create(1, 128, false, useGpu);
|
|
tempGradMat->randomizeUniform();
|
|
real* tempGradData = tempGradMat->getData();
|
|
|
|
paddle::LayerPtr upsampleLayerCPU =
|
|
doOneUpsampleTest(inputMat, "max-pool-with-mask", useGpu, tempGradData);
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
useGpu = true;
|
|
real* data = inputMat->getData();
|
|
inputGPUMat = paddle::Matrix::create(1, 128, false, useGpu);
|
|
inputGPUMat->copyFrom(data, 128);
|
|
paddle::LayerPtr upsampleLayerGPU = doOneUpsampleTest(
|
|
inputGPUMat, "max-pool-with-mask", useGpu, tempGradData);
|
|
paddle::checkMatrixEqual(upsampleLayerCPU->getOutput("").value,
|
|
upsampleLayerGPU->getOutput("").value);
|
|
|
|
paddle::checkMatrixEqual(upsampleLayerCPU->getPrev(0)->getOutputGrad(),
|
|
upsampleLayerGPU->getPrev(0)->getOutputGrad());
|
|
#endif
|
|
}
|