You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
395 lines
12 KiB
395 lines
12 KiB
/*
|
|
Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
#include "paddle/operators/recurrent_op.h"
|
|
|
|
#include <glog/logging.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "paddle/framework/ddim.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/framework/operator.h"
|
|
#include "paddle/framework/tensor.h"
|
|
#include "paddle/operators/net_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::make_ddim;
|
|
using framework::DDim;
|
|
|
|
class RecurrentOpTest : public ::testing::Test {
|
|
protected:
|
|
virtual void SetUp() override {
|
|
CreateGlobalVariables();
|
|
CreateStepNet();
|
|
CreateRNNOp();
|
|
}
|
|
|
|
virtual void TearDown() override {}
|
|
|
|
void CreateGlobalVariables() {
|
|
// create input, and init content
|
|
LOG(INFO) << "create global variable x";
|
|
for (auto inlink : std::vector<std::string>{"x", "x0", "x1", "h"}) {
|
|
Variable* x = scope_.NewVar(inlink);
|
|
DDim dims = make_ddim(std::vector<int>{
|
|
10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
|
|
x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
|
|
}
|
|
// create output alias just for test
|
|
for (auto inlink : std::vector<std::string>{"h@alias"}) {
|
|
Variable* x = scope_.NewVar(inlink);
|
|
DDim dims =
|
|
make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/});
|
|
x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
|
|
}
|
|
|
|
LOG(INFO) << "create global variable w";
|
|
Variable* w = scope_.NewVar("rnn/w");
|
|
w->GetMutable<Tensor>()->mutable_data<float>(
|
|
make_ddim(std::vector<int>{30, 30}), platform::CPUPlace());
|
|
|
|
for (auto boot : std::vector<std::string>{"h_boot"}) {
|
|
LOG(INFO) << "create global variable " << boot;
|
|
Variable* h_boot = scope_.NewVar(boot);
|
|
h_boot->GetMutable<Tensor>()->mutable_data<float>(
|
|
make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/}),
|
|
platform::CPUPlace());
|
|
}
|
|
|
|
LOG(INFO) << "create variable step_scopes";
|
|
scope_.NewVar("step_scopes");
|
|
|
|
LOG(INFO) << "create variable h";
|
|
scope_.NewVar("h");
|
|
}
|
|
|
|
void CreateRNNOp() {
|
|
framework::OpDesc op_desc;
|
|
|
|
op_desc.set_type("recurrent_op");
|
|
// inlinks 0
|
|
op_desc.add_inputs("x");
|
|
op_desc.add_inputs("x0");
|
|
op_desc.add_inputs("x1");
|
|
// boot_memories 3
|
|
op_desc.add_inputs("h_boot");
|
|
// step net 5
|
|
op_desc.add_inputs("step_net");
|
|
// outlinks 6
|
|
op_desc.add_outputs("h");
|
|
// step scopes 7
|
|
op_desc.add_outputs("step_scopes");
|
|
|
|
auto _input_format = std::vector<int>{
|
|
0, // in_link
|
|
3, // memories
|
|
4 // step_net
|
|
};
|
|
auto input_format = op_desc.add_attrs();
|
|
input_format->set_name("input_format");
|
|
input_format->set_type(paddle::framework::AttrType::INTS);
|
|
for (auto i : _input_format) {
|
|
input_format->add_ints(i);
|
|
}
|
|
|
|
auto output_format = op_desc.add_attrs();
|
|
output_format->set_name("output_format");
|
|
output_format->set_type(paddle::framework::AttrType::INTS);
|
|
for (auto i : std::vector<int>{0, 1, 2}) {
|
|
output_format->add_ints(i);
|
|
}
|
|
|
|
auto inlink_alias = op_desc.add_attrs();
|
|
inlink_alias->set_name("inlink_alias");
|
|
inlink_alias->set_type(paddle::framework::AttrType::STRINGS);
|
|
|
|
auto outlink_alias = op_desc.add_attrs();
|
|
outlink_alias->set_name("outlink_alias");
|
|
outlink_alias->set_type(paddle::framework::AttrType::STRINGS);
|
|
|
|
auto pre_memories = op_desc.add_attrs();
|
|
pre_memories->set_name("pre_memories");
|
|
pre_memories->set_type(paddle::framework::AttrType::STRINGS);
|
|
|
|
auto memories = op_desc.add_attrs();
|
|
memories->set_name("memories");
|
|
memories->set_type(paddle::framework::AttrType::STRINGS);
|
|
|
|
// create inlink_alias
|
|
for (const auto& item :
|
|
std::vector<std::string>{"x@alias", "x0@alias", "x1@alias"}) {
|
|
inlink_alias->add_strings(item);
|
|
}
|
|
// pre memories
|
|
for (const auto& item : std::vector<std::string>{"rnn/h@pre"}) {
|
|
pre_memories->add_strings(item);
|
|
}
|
|
// memories
|
|
for (const auto& item : std::vector<std::string>{"rnn/h"}) {
|
|
memories->add_strings(item);
|
|
}
|
|
// output alias
|
|
for (const auto& item : std::vector<std::string>{"h@alias"}) {
|
|
outlink_alias->add_strings(item);
|
|
}
|
|
|
|
rnn_op_ = OpRegistry::CreateOp(op_desc);
|
|
|
|
LOG(INFO) << "rnn_op finish init";
|
|
}
|
|
|
|
void CreateStepNet() {
|
|
LOG(INFO) << "create variable step_net";
|
|
Variable* var = scope_.NewVar("step_net");
|
|
auto net = var->GetMutable<NetOp>();
|
|
net->AddOp(
|
|
OpRegistry::CreateOp("mul", {"rnn/h@pre", "rnn/w"}, {"rnn/s"}, {}));
|
|
|
|
net->AddOp(
|
|
OpRegistry::CreateOp("add_two", {"x@alias", "rnn/s"}, {"rnn/h"}, {}));
|
|
net->CompleteAddOp();
|
|
}
|
|
|
|
// father scope
|
|
Scope scope_;
|
|
std::shared_ptr<OperatorBase> rnn_op_;
|
|
};
|
|
|
|
TEST_F(RecurrentOpTest, Run) {
|
|
platform::CPUDeviceContext ctx;
|
|
rnn_op_->InferShape(scope_);
|
|
rnn_op_->Run(scope_, ctx);
|
|
}
|
|
|
|
class RecurrentGradientAlgorithmTest : public ::testing::Test {
|
|
protected:
|
|
virtual void SetUp() override {
|
|
CreateGlobalVariables();
|
|
CreateStepScopes();
|
|
CreateStepNet();
|
|
CreateRNNGradientAlgorithm();
|
|
|
|
// segment inputs
|
|
SegmentInputs();
|
|
// link forward memories
|
|
LinkeMemories();
|
|
}
|
|
|
|
virtual void TearDown() override {}
|
|
|
|
void CreateGlobalVariables() {
|
|
// inputs: x
|
|
LOG(INFO) << "create global variable x";
|
|
Variable* x = scope_.NewVar("x");
|
|
DDim dims =
|
|
make_ddim({10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
|
|
x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
|
|
// inputs: h_boot
|
|
LOG(INFO) << "create global variable h_boot";
|
|
Variable* h_boot = scope_.NewVar("h_boot");
|
|
h_boot->GetMutable<Tensor>()->mutable_data<float>(
|
|
make_ddim({20 /*batch size*/, 30 /*input dim*/}), platform::CPUPlace());
|
|
// inputs: w
|
|
LOG(INFO) << "create global variable w";
|
|
Variable* w = scope_.NewVar("rnn/w");
|
|
w->GetMutable<Tensor>()->mutable_data<float>(make_ddim({30, 30}),
|
|
platform::CPUPlace());
|
|
// inputs: h_grad
|
|
LOG(INFO) << "create variable h_grad";
|
|
Variable* dh = scope_.NewVar("h_grad");
|
|
dh->GetMutable<Tensor>()->mutable_data<float>(make_ddim({10, 20, 30}),
|
|
platform::CPUPlace());
|
|
// inputs: step_scopes
|
|
LOG(INFO) << "create variable step_scopes";
|
|
scope_.NewVar("step_scopes");
|
|
// inputs: step_net
|
|
LOG(INFO) << "create variable step_net";
|
|
scope_.NewVar("step_net");
|
|
// outputs: w_grad
|
|
LOG(INFO) << "create global variable w_grad";
|
|
scope_.NewVar("rnn/w_grad");
|
|
// outputs: x_grad
|
|
LOG(INFO) << "create global variable x_grad";
|
|
scope_.NewVar("x_grad");
|
|
// outputs: h_boot_grad
|
|
LOG(INFO) << "create global variable h_boot_grad";
|
|
scope_.NewVar("h_boot_grad");
|
|
}
|
|
|
|
void CreateStepScopes() {
|
|
auto step_scopes =
|
|
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
|
|
for (int i = 0; i < 10; ++i) {
|
|
auto& scope = scope_.NewScope();
|
|
auto pre_t = scope.NewVar("rnn/pre_h")->GetMutable<Tensor>();
|
|
pre_t->mutable_data<float>({20, 30}, platform::CPUPlace());
|
|
auto tensor = scope.NewVar("rnn/h")->GetMutable<Tensor>();
|
|
tensor->mutable_data<float>({20, 30}, platform::CPUPlace());
|
|
|
|
// for unit test of ConcatOutputs
|
|
auto xg = scope.NewVar("rnn/x_grad")->GetMutable<Tensor>();
|
|
xg->mutable_data<float>({20, 30}, platform::CPUPlace());
|
|
|
|
step_scopes->emplace_back(&scope);
|
|
}
|
|
|
|
// last time step
|
|
auto g = (*step_scopes)[9]->NewVar("rnn/h_pre_grad")->GetMutable<Tensor>();
|
|
g->mutable_data<float>({20, 30}, platform::CPUPlace());
|
|
}
|
|
|
|
void CreateRNNGradientAlgorithm() {
|
|
std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
|
|
arg->step_net = "step_net";
|
|
arg->step_scopes = "step_scopes";
|
|
rnn::Link inlink;
|
|
inlink.external = "h_grad";
|
|
inlink.internal = "rnn/h_grad";
|
|
arg->inlinks = std::vector<rnn::Link>{inlink};
|
|
|
|
rnn::Link outlink;
|
|
outlink.external = "x_grad";
|
|
outlink.internal = "rnn/x_grad";
|
|
arg->outlinks = std::vector<rnn::Link>{outlink};
|
|
|
|
rnn::MemoryAttr mem_attr;
|
|
mem_attr.pre_var = "rnn/h_pre_grad";
|
|
mem_attr.var = "rnn/h_grad";
|
|
mem_attr.boot_var = "h_boot_grad";
|
|
arg->memories = std::vector<rnn::MemoryAttr>{mem_attr};
|
|
|
|
rnn_grad_algo_.Init(std::move(arg));
|
|
}
|
|
|
|
void CreateStepNet() {
|
|
LOG(INFO) << "create variable step_net";
|
|
Variable* var = scope_.NewVar("step_net");
|
|
auto net = var->GetMutable<NetOp>();
|
|
net->AddOp(OpRegistry::CreateOp("mul", {"rnn/h_pre", "rnn/w", "rnn/s_grad"},
|
|
{"rnn/h_pre_grad", "rnn/w_grad"}, {}));
|
|
|
|
net->AddOp(OpRegistry::CreateOp("add_two", {"rnn/h_grad"},
|
|
{"rnn/x_grad", "rnn/s_grad"}, {}));
|
|
net->CompleteAddOp();
|
|
}
|
|
|
|
void SegmentInputs() {
|
|
LOG(INFO) << "segment inputs";
|
|
std::vector<std::string> inlinks = {"x"};
|
|
std::vector<std::string> inlinks_alias = {"rnn/x"};
|
|
|
|
rnn::Link inlink;
|
|
inlink.external = "x";
|
|
inlink.internal = "rnn/x";
|
|
auto step_scopes =
|
|
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
|
|
rnn::SegmentInputs(*step_scopes, std::vector<rnn::Link>{inlink}, 10,
|
|
true /*infer_shape_mode*/);
|
|
}
|
|
|
|
void LinkeMemories() {
|
|
LOG(INFO) << "link memories";
|
|
rnn::MemoryAttr mem_attr;
|
|
mem_attr.pre_var = "rnn/h_pre";
|
|
mem_attr.var = "rnn/h";
|
|
mem_attr.boot_var = "boot_h";
|
|
std::vector<rnn::MemoryAttr> memories;
|
|
memories.push_back(mem_attr);
|
|
auto step_scopes =
|
|
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
|
|
for (int i = 1; i < 10; ++i) {
|
|
rnn::LinkMemories(*step_scopes, memories, i, -1,
|
|
true /*infer_shape_mode*/);
|
|
}
|
|
}
|
|
|
|
Scope scope_;
|
|
RecurrentGradientAlgorithm rnn_grad_algo_;
|
|
};
|
|
|
|
// TEST_F(RecurrentGradientAlgorithmTest, Run) {
|
|
// platform::CPUDeviceContext ctx;
|
|
// rnn_grad_algo_.Run(scope_, ctx);
|
|
// }
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
TEST(RecurrentOp, LinkMemories) {
|
|
using namespace paddle::framework;
|
|
using namespace paddle::platform;
|
|
using namespace paddle::operators;
|
|
|
|
// create and init step scopes
|
|
size_t len = 10;
|
|
std::vector<Scope*> step_scopes;
|
|
for (size_t i = 0; i < len; ++i) {
|
|
auto scope = new Scope();
|
|
scope->NewVar("pre_h");
|
|
auto tensor = scope->NewVar("h")->GetMutable<Tensor>();
|
|
float* data = tensor->mutable_data<float>({15, 20}, CPUPlace());
|
|
for (size_t j = 0; j < 15 * 20; ++j) {
|
|
data[j] = rand() * (1. / (double)RAND_MAX);
|
|
}
|
|
step_scopes.push_back(scope);
|
|
}
|
|
|
|
// create MemoryAttr
|
|
rnn::MemoryAttr mem_attr;
|
|
mem_attr.pre_var = "pre_h";
|
|
mem_attr.var = "h";
|
|
mem_attr.boot_var = "boot_h";
|
|
std::vector<rnn::MemoryAttr> memories;
|
|
memories.push_back(mem_attr);
|
|
|
|
for (size_t i = 1; i < len; ++i) {
|
|
rnn::LinkMemories(step_scopes, memories, i, -1, false /*infer_shape_mode*/);
|
|
}
|
|
// check
|
|
for (size_t i = 0; i < len - 1; ++i) {
|
|
const float* a =
|
|
step_scopes[i]->FindVar("h")->GetMutable<Tensor>()->data<float>();
|
|
const float* b = step_scopes[i + 1]
|
|
->FindVar("pre_h")
|
|
->GetMutable<Tensor>()
|
|
->data<float>();
|
|
for (size_t j = 0; j < 15 * 20; ++j) {
|
|
ASSERT_FLOAT_EQ(a[j], b[j]);
|
|
}
|
|
}
|
|
|
|
for (int i = len - 2; i >= 0; --i) {
|
|
rnn::LinkMemories(step_scopes, memories, i, 1, false /*infer_shape_mode*/);
|
|
}
|
|
// check
|
|
for (int i = len - 2; i >= 0; --i) {
|
|
const float* a =
|
|
step_scopes[i]->FindVar("pre_h")->GetMutable<Tensor>()->data<float>();
|
|
const float* b =
|
|
step_scopes[i + 1]->FindVar("h")->GetMutable<Tensor>()->data<float>();
|
|
for (size_t j = 0; j < 15 * 20; ++j) {
|
|
ASSERT_FLOAT_EQ(a[j], b[j]);
|
|
}
|
|
}
|
|
|
|
for (auto s : step_scopes) {
|
|
delete s;
|
|
}
|
|
}
|
|
|
|
USE_OP(add_two);
|
|
USE_OP(mul);
|
|
USE_OP_WITHOUT_KERNEL(recurrent_op);
|