You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/scripts/cluster_train/paddle.py

248 lines
7.9 KiB

#!/usr/bin/python
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" module for launching cluster job """
import os
import argparse
import socket
import copy
import time
import signal
from fabric.api import run, put, settings, env, prefix
from fabric.tasks import execute
#configuration for cluster
import conf
def refine_unknown_args(cmd_args):
'''
refine unknown parameters to handle some special parameters
'''
new_args = []
for arg in cmd_args:
if arg.startswith("--") and arg.find("=") != -1:
equal_pos = arg.find("=") #find first = pos
arglist = list(arg)
arglist[equal_pos] = " "
arg = "".join(arglist)
arg = arg.lstrip("-")
new_args += arg.split(" ")
elif arg.startswith("--") and arg.find("=") == -1:
arg = arg.lstrip("-")
new_args.append(arg)
else:
new_args.append(arg)
return new_args
def kill_process():
'''
kill comments threads
'''
run("ps aux \
| grep paddle_process_by_paddle \
| grep -v grep \
| awk '{print $2}' \
| xargs kill > /dev/null 2>&1")
def job_prepare(jobdir, data=None):
'''
prepare job related workspace data
Assuming you already installed PaddlePaddle in all nodes which means
PaddlePaddle related bins and dependencies libraries.
Assuming the train/test data have already been installed.
This function just prepare all related model and other resources
needed at runtime.
'''
def job_create_workspace(jobdir, data=None):
'''
prepare job workspace, common file, etc.
'''
log = os.path.join(jobdir, "log")
if data is not None:
#create job dir
run('rm ' + jobdir + ' -fr && ' + 'mkdir -p ' + jobdir)
#push data and paddle bin
put(data + "/*", jobdir)
run("mkdir -p " + log)
run('rm -fr ' + log + "/*")
def set_nodefile(nodeid):
'''
create nodefile for later usage
'''
run('echo ' + str(nodeid) + ' > ' + jobdir + '/nodefile')
execute(job_create_workspace, jobdir, data, hosts=conf.HOSTS)
for i in xrange(len(conf.HOSTS)):
execute(set_nodefile, i, hosts=conf.HOSTS[i])
#clean rubbish caused by exception
with settings(warn_only=True):
execute(kill_process, hosts=conf.HOSTS)
def job_pserver(jobdir, pids=None):
'''
start all pservers
'''
pargs = " --num_gradient_servers=" + str(len(conf.HOSTS))
pargs += (" --nics=" + conf.PADDLE_NIC)
pargs += " --port=" + str(conf.PADDLE_PORT)
pargs += " --ports_num=" + str(conf.PADDLE_PORTS_NUM)
#always start sparse pserver by default
pargs += " --ports_num_for_sparse=" + str(conf.PADDLE_PORTS_NUM_FOR_SPARSE)
pargs += " --comment=" + "paddle_process_by_paddle"
def start_pserver(jobdir, pargs):
'''
start pserver process with fabric executor
'''
with prefix('export LD_LIBRARY_PATH=' + \
conf.LD_LIBRARY_PATH + \
':$LD_LIBRARY_PATH'):
program = 'paddle pserver'
run('cd ' + jobdir + '; ' + \
'GLOG_logtostderr=0 GLOG_log_dir="./log" ' + \
'nohup ' + \
program + " " + pargs + ' > ./log/server.log 2>&1 < /dev/null & ',
pty=False)
execute(start_pserver, jobdir, pargs, hosts=conf.HOSTS)
def job_trainer(jobdir, train_args_dict, pids=None):
'''
start paddle trainer
'''
args = " --num_gradient_servers=" + str(len(conf.HOSTS))
args += " --nics=" + conf.PADDLE_NIC
args += " --port=" + str(conf.PADDLE_PORT)
args += " --ports_num=" + str(conf.PADDLE_PORTS_NUM)
args += " --comment=" + "paddle_process_by_paddle"
ip_string = ""
for i in xrange(len(conf.HOSTS)):
host = conf.HOSTS[i]
left = host.find("@")
right = host.find(':')
left = 0 if left == -1 else left + 1
right = len(host) if right == -1 else right
ip_string += (socket.gethostbyname(host[left:right]) + ",")
ip_string = ip_string.rstrip(",")
args += " --pservers=" + ip_string
args_ext = ""
for key, value in train_args_dict.items():
args_ext += (' --' + key + '=' + value)
args += " " + args_ext
def start_trainer(jobdir, args):
'''
start trainer process with fabric executor
'''
with prefix('export LD_LIBRARY_PATH=' + \
conf.LD_LIBRARY_PATH + \
':$LD_LIBRARY_PATH'):
program = 'paddle train'
run('cd ' + jobdir + '; ' + \
'GLOG_logtostderr=0 '
'GLOG_log_dir="./log" '
'nohup ' + \
program + " " + args + " > ./log/train.log 2>&1 < /dev/null & ",
pty=False)
for i in xrange(len(conf.HOSTS)):
train_args = copy.deepcopy(args)
train_args += " --trainer_id=" + str(i)
execute(start_trainer, jobdir, train_args, hosts=conf.HOSTS[i])
def job_all(job_package, jobdir=None, train_args_dict=None):
'''
param job_package
param train_args_dict
'''
if jobdir is None:
timestamp = time.strftime("%Y%m%d%H%M%S", time.localtime())
jobdir = conf.ROOT_DIR + "/JOB" + timestamp
job_prepare(jobdir, job_package)
job_pserver(jobdir)
time.sleep(5) #wait until pservers completely start
job_trainer(jobdir, train_args_dict)
job_clean()
def job_clean():
'''
if starting job failed from paddle internal, the framework always
is launched successfully since these process are daemon processes.
so this job_clean can alway clean job rubbish process with ctrl+c.
'''
def signal_handler(signal, frame):
'''
SIGINT handler
'''
def kill_process():
run("ps aux \
| grep paddle_process_by_paddle \
| grep -v grep \
| awk '{print $2}' \
| xargs kill > /dev/null 2>&1")
with settings(warn_only=True):
execute(kill_process, hosts=conf.HOSTS)
signal.signal(signal.SIGINT, signal_handler)
signal.pause()
if __name__ == '__main__':
parser = argparse.ArgumentParser(
prog="paddle.py", description='simple tool for cluster training')
parser.add_argument(
'-j',
'--job_workspace',
required=False,
default=None,
help='job workspace')
parser.add_argument(
'-p',
'--job_dispatch_package',
required=False,
default=None,
help='job package for dispatching to all other nodes')
args, train_args_list = parser.parse_known_args()
train_args = refine_unknown_args(train_args_list)
train_args_dict = dict(zip(train_args[:-1:2], train_args[1::2]))
if args.job_workspace is not None:
#if assigned workspace, do not need to dispatch data,
#so job_local_package should be None
assert args.job_dispatch_package is None
job_all(None, args.job_workspace, train_args_dict)
elif args.job_dispatch_package is not None:
assert args.job_workspace is None
assert os.path.isdir(args.job_dispatch_package)
job_all(args.job_dispatch_package, None, train_args_dict)
else:
print "--job_workspace or --job_dispatch_package should be set"