You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/adversarial/fluid_mnist.py

87 lines
2.5 KiB

"""
CNN on mnist data using fluid api of paddlepaddle
"""
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
def mnist_cnn_model(img):
"""
Mnist cnn model
Args:
img(Varaible): the input image to be recognized
Returns:
Variable: the label prediction
"""
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=img,
num_filters=20,
filter_size=5,
pool_size=2,
pool_stride=2,
act='relu')
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
num_filters=50,
filter_size=5,
pool_size=2,
pool_stride=2,
act='relu')
logits = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
return logits
def main():
"""
Train the cnn model on mnist datasets
"""
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
logits = mnist_cnn_model(img)
cost = fluid.layers.cross_entropy(input=logits, label=label)
avg_cost = fluid.layers.mean(x=cost)
optimizer = fluid.optimizer.Adam(learning_rate=0.01)
optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=logits, label=label)
BATCH_SIZE = 50
PASS_NUM = 3
ACC_THRESHOLD = 0.98
LOSS_THRESHOLD = 10.0
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=500),
batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
exe.run(fluid.default_startup_program())
for pass_id in range(PASS_NUM):
accuracy.reset(exe)
for data in train_reader():
loss, acc = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost] + accuracy.metrics)
pass_acc = accuracy.eval(exe)
print("pass_id=" + str(pass_id) + " acc=" + str(acc) + " pass_acc="
+ str(pass_acc))
if loss < LOSS_THRESHOLD and pass_acc > ACC_THRESHOLD:
break
pass_acc = accuracy.eval(exe)
print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc))
fluid.io.save_params(
exe, dirname='./mnist', main_program=fluid.default_main_program())
print('train mnist done')
if __name__ == '__main__':
main()