You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
240 lines
8.6 KiB
240 lines
8.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import sys
|
|
import math
|
|
from op_test import OpTest
|
|
|
|
|
|
def box_decoder(t_box, p_box, pb_v, output_box, norm, axis=0):
|
|
pb_w = p_box[:, 2] - p_box[:, 0] + (norm == False)
|
|
pb_h = p_box[:, 3] - p_box[:, 1] + (norm == False)
|
|
pb_x = pb_w * 0.5 + p_box[:, 0]
|
|
pb_y = pb_h * 0.5 + p_box[:, 1]
|
|
shape = (1, p_box.shape[0]) if axis == 0 else (p_box.shape[0], 1)
|
|
|
|
pb_w = pb_w.reshape(shape)
|
|
pb_h = pb_h.reshape(shape)
|
|
pb_x = pb_x.reshape(shape)
|
|
pb_y = pb_y.reshape(shape)
|
|
|
|
if pb_v.ndim == 2:
|
|
var_shape = (1, pb_v.shape[0], pb_v.shape[1]) if axis == 0 else (
|
|
pb_v.shape[0], 1, pb_v.shape[1])
|
|
pb_v = pb_v.reshape(var_shape)
|
|
if pb_v.ndim == 1:
|
|
tb_x = pb_v[0] * t_box[:, :, 0] * pb_w + pb_x
|
|
tb_y = pb_v[1] * t_box[:, :, 1] * pb_h + pb_y
|
|
tb_w = np.exp(pb_v[2] * t_box[:, :, 2]) * pb_w
|
|
tb_h = np.exp(pb_v[3] * t_box[:, :, 3]) * pb_h
|
|
else:
|
|
tb_x = pb_v[:, :, 0] * t_box[:, :, 0] * pb_w + pb_x
|
|
tb_y = pb_v[:, :, 1] * t_box[:, :, 1] * pb_h + pb_y
|
|
tb_w = np.exp(pb_v[:, :, 2] * t_box[:, :, 2]) * pb_w
|
|
tb_h = np.exp(pb_v[:, :, 3] * t_box[:, :, 3]) * pb_h
|
|
output_box[:, :, 0] = tb_x - tb_w / 2
|
|
output_box[:, :, 1] = tb_y - tb_h / 2
|
|
output_box[:, :, 2] = tb_x + tb_w / 2 - (not norm)
|
|
output_box[:, :, 3] = tb_y + tb_h / 2 - (not norm)
|
|
|
|
|
|
def box_encoder(t_box, p_box, pb_v, output_box, norm):
|
|
pb_w = p_box[:, 2] - p_box[:, 0] + (norm == False)
|
|
pb_h = p_box[:, 3] - p_box[:, 1] + (norm == False)
|
|
pb_x = pb_w * 0.5 + p_box[:, 0]
|
|
pb_y = pb_h * 0.5 + p_box[:, 1]
|
|
shape = (1, p_box.shape[0])
|
|
|
|
pb_w = pb_w.reshape(shape)
|
|
pb_h = pb_h.reshape(shape)
|
|
pb_x = pb_x.reshape(shape)
|
|
pb_y = pb_y.reshape(shape)
|
|
|
|
if pb_v.ndim == 2:
|
|
pb_v = pb_v.reshape(1, pb_v.shape[0], pb_v.shape[1])
|
|
tb_x = ((t_box[:, 2] + t_box[:, 0]) / 2).reshape(t_box.shape[0], 1)
|
|
tb_y = ((t_box[:, 3] + t_box[:, 1]) / 2).reshape(t_box.shape[0], 1)
|
|
tb_w = (t_box[:, 2] - t_box[:, 0]).reshape(t_box.shape[0], 1) + (not norm)
|
|
tb_h = (t_box[:, 3] - t_box[:, 1]).reshape(t_box.shape[0], 1) + (not norm)
|
|
if pb_v.ndim == 1:
|
|
output_box[:, :, 0] = (tb_x - pb_x) / pb_w / pb_v[0]
|
|
output_box[:, :, 1] = (tb_y - pb_y) / pb_h / pb_v[1]
|
|
output_box[:, :, 2] = np.log(np.fabs(tb_w / pb_w)) / pb_v[2]
|
|
output_box[:, :, 3] = np.log(np.fabs(tb_h / pb_h)) / pb_v[3]
|
|
else:
|
|
output_box[:, :, 0] = (tb_x - pb_x) / pb_w / pb_v[:, :, 0]
|
|
output_box[:, :, 1] = (tb_y - pb_y) / pb_h / pb_v[:, :, 1]
|
|
output_box[:, :, 2] = np.log(np.fabs(tb_w / pb_w)) / pb_v[:, :, 2]
|
|
output_box[:, :, 3] = np.log(np.fabs(tb_h / pb_h)) / pb_v[:, :, 3]
|
|
|
|
|
|
def batch_box_coder(p_box, pb_v, t_box, lod, code_type, norm, axis=0):
|
|
n = t_box.shape[0]
|
|
m = p_box.shape[0]
|
|
if code_type == "DecodeCenterSize":
|
|
m = t_box.shape[1]
|
|
output_box = np.zeros((n, m, 4), dtype=np.float32)
|
|
cur_offset = 0
|
|
for i in range(len(lod)):
|
|
if (code_type == "EncodeCenterSize"):
|
|
box_encoder(t_box[cur_offset:(cur_offset + lod[i]), :], p_box, pb_v,
|
|
output_box[cur_offset:(cur_offset + lod[i]), :, :],
|
|
norm)
|
|
elif (code_type == "DecodeCenterSize"):
|
|
box_decoder(t_box, p_box, pb_v, output_box, norm, axis)
|
|
cur_offset += lod[i]
|
|
return output_box
|
|
|
|
|
|
class TestBoxCoderOp(OpTest):
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def setUp(self):
|
|
self.op_type = "box_coder"
|
|
lod = [[1, 1, 1, 1, 1]]
|
|
prior_box = np.random.random((81, 4)).astype('float32')
|
|
prior_box_var = np.random.random((81, 4)).astype('float32')
|
|
target_box = np.random.random((20, 81, 4)).astype('float32')
|
|
code_type = "DecodeCenterSize"
|
|
box_normalized = False
|
|
output_box = batch_box_coder(prior_box, prior_box_var, target_box,
|
|
lod[0], code_type, box_normalized)
|
|
self.inputs = {
|
|
'PriorBox': prior_box,
|
|
'PriorBoxVar': prior_box_var,
|
|
'TargetBox': target_box,
|
|
}
|
|
self.attrs = {
|
|
'code_type': 'decode_center_size',
|
|
'box_normalized': False
|
|
}
|
|
self.outputs = {'OutputBox': output_box}
|
|
|
|
|
|
class TestBoxCoderOpWithoutBoxVar(OpTest):
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def setUp(self):
|
|
self.op_type = "box_coder"
|
|
lod = [[0, 1, 2, 3, 4, 5]]
|
|
prior_box = np.random.random((81, 4)).astype('float32')
|
|
prior_box_var = np.ones((81, 4)).astype('float32')
|
|
target_box = np.random.random((20, 81, 4)).astype('float32')
|
|
code_type = "DecodeCenterSize"
|
|
box_normalized = False
|
|
output_box = batch_box_coder(prior_box, prior_box_var, target_box,
|
|
lod[0], code_type, box_normalized)
|
|
|
|
self.inputs = {
|
|
'PriorBox': prior_box,
|
|
'TargetBox': target_box,
|
|
}
|
|
self.attrs = {
|
|
'code_type': 'decode_center_size',
|
|
'box_normalized': False
|
|
}
|
|
self.outputs = {'OutputBox': output_box}
|
|
|
|
|
|
class TestBoxCoderOpWithLoD(OpTest):
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def setUp(self):
|
|
self.op_type = "box_coder"
|
|
lod = [[10, 20, 20]]
|
|
prior_box = np.random.random((20, 4)).astype('float32')
|
|
prior_box_var = np.random.random((20, 4)).astype('float32')
|
|
target_box = np.random.random((50, 4)).astype('float32')
|
|
code_type = "EncodeCenterSize"
|
|
box_normalized = True
|
|
output_box = batch_box_coder(prior_box, prior_box_var, target_box,
|
|
lod[0], code_type, box_normalized)
|
|
|
|
self.inputs = {
|
|
'PriorBox': prior_box,
|
|
'PriorBoxVar': prior_box_var,
|
|
'TargetBox': (target_box, lod),
|
|
}
|
|
self.attrs = {'code_type': 'encode_center_size', 'box_normalized': True}
|
|
self.outputs = {'OutputBox': output_box}
|
|
|
|
|
|
class TestBoxCoderOpWithAxis(OpTest):
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def setUp(self):
|
|
self.op_type = "box_coder"
|
|
lod = [[1, 1, 1, 1, 1]]
|
|
prior_box = np.random.random((30, 4)).astype('float32')
|
|
prior_box_var = np.random.random((30, 4)).astype('float32')
|
|
target_box = np.random.random((30, 81, 4)).astype('float32')
|
|
code_type = "DecodeCenterSize"
|
|
box_normalized = False
|
|
axis = 1
|
|
output_box = batch_box_coder(prior_box, prior_box_var, target_box,
|
|
lod[0], code_type, box_normalized, axis)
|
|
|
|
self.inputs = {
|
|
'PriorBox': prior_box,
|
|
'PriorBoxVar': prior_box_var,
|
|
'TargetBox': target_box,
|
|
}
|
|
self.attrs = {
|
|
'code_type': 'decode_center_size',
|
|
'box_normalized': False,
|
|
'axis': axis
|
|
}
|
|
self.outputs = {'OutputBox': output_box}
|
|
|
|
|
|
class TestBoxCoderOpWithVariance(OpTest):
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def setUp(self):
|
|
self.op_type = "box_coder"
|
|
lod = [[1, 1, 1, 1, 1]]
|
|
prior_box = np.random.random((30, 4)).astype('float32')
|
|
prior_box_var = np.random.random((4)).astype('float32')
|
|
target_box = np.random.random((30, 81, 4)).astype('float32')
|
|
code_type = "DecodeCenterSize"
|
|
box_normalized = False
|
|
axis = 1
|
|
output_box = batch_box_coder(prior_box, prior_box_var, target_box,
|
|
lod[0], code_type, box_normalized, axis)
|
|
|
|
self.inputs = {
|
|
'PriorBox': prior_box,
|
|
'TargetBox': target_box,
|
|
}
|
|
self.attrs = {
|
|
'code_type': 'decode_center_size',
|
|
'box_normalized': False,
|
|
'variance': prior_box_var.astype(np.float).flatten(),
|
|
'axis': axis
|
|
}
|
|
self.outputs = {'OutputBox': output_box}
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|