You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							207 lines
						
					
					
						
							7.7 KiB
						
					
					
				
			
		
		
	
	
							207 lines
						
					
					
						
							7.7 KiB
						
					
					
				/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/framework/eigen.h"
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
#include "paddle/fluid/operators/lookup_table_v2_op.h"
 | 
						|
#include "paddle/fluid/platform/cuda_primitives.h"
 | 
						|
#include "paddle/fluid/platform/float16.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
template <typename T, int BlockDimX, int BlockDimY, int GridDimX,
 | 
						|
          bool PaddingFlag>
 | 
						|
__global__ void LookupTableV2(T *output, const T *table, const int64_t *ids,
 | 
						|
                              const int64_t N, const int64_t K, const int64_t D,
 | 
						|
                              const int64_t padding_idx) {
 | 
						|
  int idx = threadIdx.x;
 | 
						|
  int idy = blockIdx.x + threadIdx.y * GridDimX;
 | 
						|
 | 
						|
  while (idy < K) {
 | 
						|
    int64_t id = ids[idy];
 | 
						|
    PADDLE_ENFORCE(
 | 
						|
        id >= 0,
 | 
						|
        "Variable value (input) of OP(fluid.layers.embedding) "
 | 
						|
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
 | 
						|
        N, id);
 | 
						|
    PADDLE_ENFORCE(
 | 
						|
        id < N,
 | 
						|
        "Variable value (input) of OP(fluid.layers.embedding) "
 | 
						|
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
 | 
						|
        N, id);
 | 
						|
    T *out = output + idy * D;
 | 
						|
    const T *tab = table + id * D;
 | 
						|
    for (int i = idx; i < D; i += BlockDimX) {
 | 
						|
      if (PaddingFlag) {
 | 
						|
        if (id == padding_idx)
 | 
						|
          out[i] = static_cast<T>(0);
 | 
						|
        else
 | 
						|
          out[i] = tab[i];
 | 
						|
      } else {
 | 
						|
        out[i] = tab[i];
 | 
						|
      }
 | 
						|
    }
 | 
						|
    idy += BlockDimY * GridDimX;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
 | 
						|
__global__ void LookupTableV2Grad(T *table, const T *output, const int64_t *ids,
 | 
						|
                                  const int64_t N, const int64_t K,
 | 
						|
                                  const int64_t D) {
 | 
						|
  int idx = threadIdx.x;
 | 
						|
  int idy = blockIdx.x + threadIdx.y * GridDimX;
 | 
						|
 | 
						|
  while (idy < K) {
 | 
						|
    int64_t id = ids[idy];
 | 
						|
    PADDLE_ENFORCE(
 | 
						|
        id >= 0,
 | 
						|
        "Variable value (input) of OP(fluid.layers.embedding) "
 | 
						|
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
 | 
						|
        N, id);
 | 
						|
    PADDLE_ENFORCE(
 | 
						|
        id < N,
 | 
						|
        "Variable value (input) of OP(fluid.layers.embedding) "
 | 
						|
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
 | 
						|
        N, id);
 | 
						|
    const T *out = output + idy * D;
 | 
						|
    T *tab = table + id * D;
 | 
						|
    for (int i = idx; i < D; i += BlockDimX) {
 | 
						|
      paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
 | 
						|
    }
 | 
						|
    idy += BlockDimY * GridDimX;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class LookupTableV2CUDAKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext &context) const override {
 | 
						|
    auto *table_t = context.Input<LoDTensor>("W");
 | 
						|
    auto *ids_t = context.Input<LoDTensor>("Ids");
 | 
						|
    auto *output_t = context.Output<LoDTensor>("Out");
 | 
						|
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
 | 
						|
 | 
						|
    auto id_name = context.InputNames("Ids").front();
 | 
						|
    auto out_name = context.OutputNames("Out").front();
 | 
						|
 | 
						|
    size_t N = table_t->dims()[0];
 | 
						|
    size_t D = table_t->dims()[1];
 | 
						|
    size_t K = ids_t->numel();
 | 
						|
 | 
						|
    auto *ids = ids_t->data<int64_t>();
 | 
						|
    auto *table = table_t->data<T>();
 | 
						|
    auto *output = output_t->mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
    dim3 threads(128, 8);
 | 
						|
    dim3 grids(8, 1);
 | 
						|
 | 
						|
    if (padding_idx == -1)
 | 
						|
      LookupTableV2<
 | 
						|
          T, 128, 8, 8,
 | 
						|
          false><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
 | 
						|
          output, table, ids, N, K, D, padding_idx);
 | 
						|
    else
 | 
						|
      LookupTableV2<
 | 
						|
          T, 128, 8, 8,
 | 
						|
          true><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
 | 
						|
          output, table, ids, N, K, D, padding_idx);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class LookupTableV2GradCUDAKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext &context) const override {
 | 
						|
    auto &dev_ctx =
 | 
						|
        context.template device_context<platform::CUDADeviceContext>();
 | 
						|
    bool is_sparse = context.Attr<bool>("is_sparse");
 | 
						|
 | 
						|
    // Since paddings are not trainable and fixed in forward, the gradient of
 | 
						|
    // paddings makes no sense and we don't deal with it in backward.
 | 
						|
    if (is_sparse) {
 | 
						|
      auto *ids = context.Input<LoDTensor>("Ids");
 | 
						|
      auto *table = context.Input<LoDTensor>("W");
 | 
						|
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
 | 
						|
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
 | 
						|
 | 
						|
      auto *ids_data = ids->data<int64_t>();
 | 
						|
      int64_t ids_num = ids->numel();
 | 
						|
 | 
						|
      auto stream = dev_ctx.stream();
 | 
						|
      // copy GPU memory to CPU pinned memory
 | 
						|
      framework::Vector<int64_t> new_rows;
 | 
						|
      new_rows.resize(ids_num);
 | 
						|
      auto gpu_place = boost::get<platform::CUDAPlace>(context.GetPlace());
 | 
						|
 | 
						|
      // TODO(yuyang18): Strange code here.
 | 
						|
      memory::Copy(gpu_place, new_rows.CUDAMutableData(context.GetPlace()),
 | 
						|
                   gpu_place, ids_data, ids_num * sizeof(int64_t), stream);
 | 
						|
      d_table->set_rows(new_rows);
 | 
						|
 | 
						|
      auto *d_table_value = d_table->mutable_value();
 | 
						|
      d_table_value->Resize({ids_num, table->dims()[1]});
 | 
						|
      d_table_value->mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
      auto *d_table_data = d_table_value->data<T>();
 | 
						|
      auto *d_output_data = d_output->data<T>();
 | 
						|
      auto d_output_dims = d_output->dims();
 | 
						|
      auto d_output_dims_2d =
 | 
						|
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
 | 
						|
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
 | 
						|
                        "ShapeError: The shape of lookup_table@Grad and "
 | 
						|
                        "output@Grad should be same. "
 | 
						|
                        "But received lookup_table@Grad's shape = [%s], "
 | 
						|
                        "output@Grad's shape = [%s].",
 | 
						|
                        d_table_value->dims(), d_output_dims_2d);
 | 
						|
      memory::Copy(gpu_place, d_table_data, gpu_place, d_output_data,
 | 
						|
                   d_output->numel() * sizeof(T), stream);
 | 
						|
 | 
						|
    } else {
 | 
						|
      auto ids_t = context.Input<LoDTensor>("Ids");
 | 
						|
      auto d_output_t = context.Input<LoDTensor>(framework::GradVarName("Out"));
 | 
						|
      auto d_table_t = context.Output<LoDTensor>(framework::GradVarName("W"));
 | 
						|
 | 
						|
      int N = d_table_t->dims()[0];
 | 
						|
      int D = d_table_t->dims()[1];
 | 
						|
      int K = ids_t->numel();
 | 
						|
      const int64_t *ids = ids_t->data<int64_t>();
 | 
						|
      const T *d_output = d_output_t->data<T>();
 | 
						|
      T *d_table = d_table_t->mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
      auto t = framework::EigenVector<T>::Flatten(*d_table_t);
 | 
						|
      t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));
 | 
						|
 | 
						|
      dim3 threads(128, 8);
 | 
						|
      dim3 grids(8, 1);
 | 
						|
      LookupTableV2Grad<T, 128, 8, 8><<<grids, threads, 0, dev_ctx.stream()>>>(
 | 
						|
          d_table, d_output, ids, N, K, D);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
namespace plat = paddle::platform;
 | 
						|
REGISTER_OP_CUDA_KERNEL(lookup_table_v2, ops::LookupTableV2CUDAKernel<float>,
 | 
						|
                        ops::LookupTableV2CUDAKernel<double>,
 | 
						|
                        ops::LookupTableV2CUDAKernel<plat::float16>);
 | 
						|
REGISTER_OP_CUDA_KERNEL(lookup_table_v2_grad,
 | 
						|
                        ops::LookupTableV2GradCUDAKernel<float>,
 | 
						|
                        ops::LookupTableV2GradCUDAKernel<double>,
 | 
						|
                        ops::LookupTableV2GradCUDAKernel<plat::float16>);
 |