You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_fleet_base.py

144 lines
5.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
import os
class TestFleetBase(unittest.TestCase):
def setUp(self):
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
os.environ["PADDLE_TRAINERS_NUM"] = "2"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
"127.0.0.1:36001,127.0.0.2:36001"
def test_init(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
def test_is_first_worker(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
if fleet.is_first_worker():
print("test fleet first worker done.")
def test_worker_index(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
print(fleet.worker_index())
def test_worker_num(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
print(fleet.worker_num())
def test_is_worker(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
if fleet.is_worker():
print("test fleet is worker")
def test_worker_endpoints(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
print(fleet.worker_endpoints(to_string=True))
def test_server_num(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
if fleet.is_server():
print("fleet server num: {}".format(fleet.server_num()))
def test_server_index(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
if fleet.is_server():
print("fleet server index: {}".format(fleet.server_index()))
def test_server_endpoints(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
if fleet.is_server():
print("fleet server index: {}".format(
fleet.server_endpoints(to_string=True)))
def test_is_server(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
if fleet.is_server():
print("test fleet is server")
def test_util(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
self.assertEqual(fleet.util, None)
def test_barrier_worker(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
if fleet.is_worker():
fleet.barrier_worker()
def test_init_worker(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
if fleet.is_worker():
fleet.init_worker()
def test_run_server(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
if fleet.is_worker():
fleet.run_worker()
def test_stop_worker(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
if fleet.is_worker():
fleet.stop_worker()
def test_distributed_optimizer(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
optimizer = paddle.optimizer.SGD(learning_rate=0.001)
optimizer = fleet.distributed_optimizer(optimizer)
def test_minimize(self):
input_x = paddle.fluid.layers.data(
name="x", shape=[32], dtype='float32')
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
cost = paddle.fluid.layers.cross_entropy(
input=prediction, label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
strategy = fleet.DistributedStrategy()
optimizer = paddle.optimizer.SGD(learning_rate=0.001)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
if __name__ == "__main__":
unittest.main()