You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
155 lines
5.4 KiB
155 lines
5.4 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle
|
|
from paddle.fluid import core
|
|
from paddle import Program, program_guard
|
|
|
|
|
|
def output_hist(out):
|
|
hist, _ = np.histogram(out, range=(-10, 10))
|
|
hist = hist.astype("float32")
|
|
hist /= float(out.size)
|
|
prob = 0.1 * np.ones((10))
|
|
return hist, prob
|
|
|
|
|
|
class TestRandintOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "randint"
|
|
self.inputs = {}
|
|
self.init_attrs()
|
|
self.outputs = {"Out": np.zeros((10000, 784)).astype("float32")}
|
|
|
|
def init_attrs(self):
|
|
self.attrs = {"shape": [10000, 784], "low": -10, "high": 10, "seed": 10}
|
|
self.output_hist = output_hist
|
|
|
|
def test_check_output(self):
|
|
self.check_output_customized(self.verify_output)
|
|
|
|
def verify_output(self, outs):
|
|
hist, prob = self.output_hist(np.array(outs[0]))
|
|
self.assertTrue(
|
|
np.allclose(
|
|
hist, prob, rtol=0, atol=0.001), "hist: " + str(hist))
|
|
|
|
|
|
class TestRandintOpError(unittest.TestCase):
|
|
def test_errors(self):
|
|
with program_guard(Program(), Program()):
|
|
self.assertRaises(TypeError, paddle.randint, 5, shape=np.array([2]))
|
|
self.assertRaises(TypeError, paddle.randint, 5, dtype='float32')
|
|
self.assertRaises(ValueError, paddle.randint, 5, 5)
|
|
self.assertRaises(ValueError, paddle.randint, -5)
|
|
|
|
|
|
class TestRandintOp_attr_tensorlist(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "randint"
|
|
self.new_shape = (10000, 784)
|
|
shape_tensor = []
|
|
for index, ele in enumerate(self.new_shape):
|
|
shape_tensor.append(("x" + str(index), np.ones(
|
|
(1)).astype("int64") * ele))
|
|
self.inputs = {'ShapeTensorList': shape_tensor}
|
|
self.init_attrs()
|
|
self.outputs = {"Out": np.zeros((10000, 784)).astype("int32")}
|
|
|
|
def init_attrs(self):
|
|
self.attrs = {"low": -10, "high": 10, "seed": 10}
|
|
self.output_hist = output_hist
|
|
|
|
def test_check_output(self):
|
|
self.check_output_customized(self.verify_output)
|
|
|
|
def verify_output(self, outs):
|
|
hist, prob = self.output_hist(np.array(outs[0]))
|
|
self.assertTrue(
|
|
np.allclose(
|
|
hist, prob, rtol=0, atol=0.001), "hist: " + str(hist))
|
|
|
|
|
|
class TestRandint_attr_tensor(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "randint"
|
|
self.inputs = {"ShapeTensor": np.array([10000, 784]).astype("int64")}
|
|
self.init_attrs()
|
|
self.outputs = {"Out": np.zeros((10000, 784)).astype("int64")}
|
|
|
|
def init_attrs(self):
|
|
self.attrs = {"low": -10, "high": 10, "seed": 10}
|
|
self.output_hist = output_hist
|
|
|
|
def test_check_output(self):
|
|
self.check_output_customized(self.verify_output)
|
|
|
|
def verify_output(self, outs):
|
|
hist, prob = self.output_hist(np.array(outs[0]))
|
|
self.assertTrue(
|
|
np.allclose(
|
|
hist, prob, rtol=0, atol=0.001), "hist: " + str(hist))
|
|
|
|
|
|
# Test python API
|
|
class TestRandintAPI(unittest.TestCase):
|
|
def test_api(self):
|
|
with program_guard(Program(), Program()):
|
|
# results are from [0, 5).
|
|
out1 = paddle.randint(5)
|
|
# shape is a list and dtype is 'int32'
|
|
out2 = paddle.randint(
|
|
low=-100, high=100, shape=[64, 64], dtype='int32')
|
|
# shape is a tuple and dtype is 'int64'
|
|
out3 = paddle.randint(
|
|
low=-100, high=100, shape=(32, 32, 3), dtype='int64')
|
|
# shape is a tensorlist and dtype is 'float32'
|
|
dim_1 = paddle.fill_constant([1], "int64", 32)
|
|
dim_2 = paddle.fill_constant([1], "int32", 50)
|
|
out4 = paddle.randint(
|
|
low=-100, high=100, shape=[dim_1, 5, dim_2], dtype='int32')
|
|
# shape is a tensor and dtype is 'float64'
|
|
var_shape = paddle.nn.data(
|
|
name='var_shape', shape=[2], dtype="int64")
|
|
out5 = paddle.randint(
|
|
low=1, high=1000, shape=var_shape, dtype='int64')
|
|
|
|
place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else paddle.CPUPlace()
|
|
exe = paddle.Executor(place)
|
|
outs = exe.run(
|
|
feed={'var_shape': np.array([100, 100]).astype('int64')},
|
|
fetch_list=[out1, out2, out3, out4, out5])
|
|
|
|
|
|
class TestRandintImperative(unittest.TestCase):
|
|
def test_api(self):
|
|
n = 10
|
|
with paddle.imperative.guard():
|
|
x1 = paddle.randint(n, shape=[10], dtype="int32")
|
|
x2 = paddle.tensor.randint(n)
|
|
x3 = paddle.tensor.random.randint(n)
|
|
for i in [x1, x2, x3]:
|
|
for j in i.numpy().tolist():
|
|
self.assertTrue((j >= 0 and j < n))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|