You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/contrib/layers/nn.py

91 lines
3.0 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contrib layers just related to the neural network.
"""
from __future__ import print_function
import numpy as np
import six
import os
import inspect
from paddle.fluid.layer_helper import LayerHelper
__all__ = ['fused_elemwise_activation', ]
def fused_elemwise_activation(x,
y,
functor_list,
axis=-1,
scale=0.0,
save_intermediate_out=True):
"""
**Fused elementwise_add/mul and activation layers**
This function computes an elementwise_add/mul cooperated with an activation.
.. math::
out = Unary(Binary(x, y))
or
.. math::
out = Binary(x, Unary(y))
Unary operators can be: `scale`, `relu`, `tanh`. Binary operators can be:
`elementwise_add`, `elementwise_mul`.
Args:
x (Variable): left operation of the binary operator.
y (Variable): right operator of the binary operator.
functor_list (list of str): types of operator which will be executed
by this layer. For example, ['elementwise_add', 'relu']
(out = elementwise_add(x, relu(y))),
or ['relu', 'elemmentwise_add'] (out = relu(elementwise_add(x, y))).
axis (int32, default -1): axis of elementwise op.
scale (float32, default 0): parameter of scale op.
save_intermediate_out (bool, default True): whether to save the
intermediate result, Unary(y) or Binary(x, y).
Returns:
Variable: The computation result.
"""
if isinstance(functor_list, str):
functor_list = functor_list.split(',')
if not isinstance(functor_list, list) or len(functor_list) != 2:
raise ValueError(
'functor_list should be a list of str, and the length should be 2.')
helper = LayerHelper('fused_elemwise_activation', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
intermediate_out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='fused_elemwise_activation',
inputs={'X': x,
'Y': y},
outputs={'Out': out,
'IntermediateOut': intermediate_out},
attrs={
'axis': axis,
'scale': scale,
'save_intermediate_out': save_intermediate_out,
'functor_list': functor_list
})
return out