You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
91 lines
3.0 KiB
91 lines
3.0 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Contrib layers just related to the neural network.
|
|
"""
|
|
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import six
|
|
import os
|
|
import inspect
|
|
from paddle.fluid.layer_helper import LayerHelper
|
|
|
|
__all__ = ['fused_elemwise_activation', ]
|
|
|
|
|
|
def fused_elemwise_activation(x,
|
|
y,
|
|
functor_list,
|
|
axis=-1,
|
|
scale=0.0,
|
|
save_intermediate_out=True):
|
|
"""
|
|
**Fused elementwise_add/mul and activation layers**
|
|
|
|
This function computes an elementwise_add/mul cooperated with an activation.
|
|
|
|
.. math::
|
|
|
|
out = Unary(Binary(x, y))
|
|
|
|
or
|
|
|
|
.. math::
|
|
|
|
out = Binary(x, Unary(y))
|
|
|
|
Unary operators can be: `scale`, `relu`, `tanh`. Binary operators can be:
|
|
`elementwise_add`, `elementwise_mul`.
|
|
|
|
Args:
|
|
x (Variable): left operation of the binary operator.
|
|
y (Variable): right operator of the binary operator.
|
|
functor_list (list of str): types of operator which will be executed
|
|
by this layer. For example, ['elementwise_add', 'relu']
|
|
(out = elementwise_add(x, relu(y))),
|
|
or ['relu', 'elemmentwise_add'] (out = relu(elementwise_add(x, y))).
|
|
axis (int32, default -1): axis of elementwise op.
|
|
scale (float32, default 0): parameter of scale op.
|
|
save_intermediate_out (bool, default True): whether to save the
|
|
intermediate result, Unary(y) or Binary(x, y).
|
|
|
|
Returns:
|
|
Variable: The computation result.
|
|
"""
|
|
if isinstance(functor_list, str):
|
|
functor_list = functor_list.split(',')
|
|
|
|
if not isinstance(functor_list, list) or len(functor_list) != 2:
|
|
raise ValueError(
|
|
'functor_list should be a list of str, and the length should be 2.')
|
|
|
|
helper = LayerHelper('fused_elemwise_activation', **locals())
|
|
out = helper.create_variable_for_type_inference(dtype=x.dtype)
|
|
intermediate_out = helper.create_variable_for_type_inference(dtype=x.dtype)
|
|
helper.append_op(
|
|
type='fused_elemwise_activation',
|
|
inputs={'X': x,
|
|
'Y': y},
|
|
outputs={'Out': out,
|
|
'IntermediateOut': intermediate_out},
|
|
attrs={
|
|
'axis': axis,
|
|
'scale': scale,
|
|
'save_intermediate_out': save_intermediate_out,
|
|
'functor_list': functor_list
|
|
})
|
|
return out
|