You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/install_check.py

143 lines
5.7 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .framework import Program, program_guard, unique_name, default_startup_program
from .param_attr import ParamAttr
from .initializer import Constant
from . import layers
from . import backward
from .dygraph import Layer, nn
from . import executor
from . import optimizer
from . import core
from . import compiler
import logging
import numpy as np
import os
__all__ = ['run_check']
class SimpleLayer(Layer):
def __init__(self, name_scope):
super(SimpleLayer, self).__init__(name_scope)
self._fc1 = nn.FC(self.full_name(),
3,
param_attr=ParamAttr(initializer=Constant(value=0.1)))
def forward(self, inputs):
x = self._fc1(inputs)
x = layers.reduce_sum(x)
return x
def run_check():
''' intall check to verify if install is success
This func should not be called only if you need to verify installation
'''
print("Running Verify Fluid Program ... ")
use_cuda = False if not core.is_compiled_with_cuda() else True
place = core.CPUPlace() if not core.is_compiled_with_cuda(
) else core.CUDAPlace(0)
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
if use_cuda:
if core.get_cuda_device_count() > 1:
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"
else:
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
def test_parallerl_exe():
train_prog = Program()
startup_prog = Program()
scope = core.Scope()
if not use_cuda:
os.environ['CPU_NUM'] = "2"
with executor.scope_guard(scope):
with program_guard(train_prog, startup_prog):
with unique_name.guard():
places = []
build_strategy = compiler.BuildStrategy()
build_strategy.enable_inplace = True
build_strategy.memory_optimize = True
inp = layers.data(
name="inp", shape=[2, 2], append_batch_size=False)
simple_layer = SimpleLayer("simple_layer")
out = simple_layer(inp)
exe = executor.Executor(place)
if use_cuda:
places = [core.CUDAPlace(0), core.CUDAPlace(1)]
else:
places = [core.CPUPlace(), core.CPUPlace()]
loss = layers.mean(out)
loss.persistable = True
optimizer.SGD(learning_rate=0.01).minimize(loss)
startup_prog.random_seed = 1
compiled_prog = compiler.CompiledProgram(
train_prog).with_data_parallel(
build_strategy=build_strategy,
loss_name=loss.name,
places=places)
exe.run(startup_prog)
exe.run(compiled_prog,
feed={inp.name: np_inp},
fetch_list=[loss.name])
def test_simple_exe():
train_prog = Program()
startup_prog = Program()
scope = core.Scope()
if not use_cuda:
os.environ['CPU_NUM'] = "1"
with executor.scope_guard(scope):
with program_guard(train_prog, startup_prog):
with unique_name.guard():
inp0 = layers.data(
name="inp", shape=[2, 2], append_batch_size=False)
simple_layer0 = SimpleLayer("simple_layer")
out0 = simple_layer0(inp0)
param_grads = backward.append_backward(
out0, parameter_list=[simple_layer0._fc1._w.name])[0]
exe0 = executor.Executor(core.CPUPlace()
if not core.is_compiled_with_cuda()
else core.CUDAPlace(0))
exe0.run(startup_prog)
exe0.run(feed={inp0.name: np_inp},
fetch_list=[out0.name, param_grads[1].name])
test_simple_exe()
print("Your Paddle Fluid works well on SINGLE GPU or CPU.")
try:
test_parallerl_exe()
print("Your Paddle Fluid works well on MUTIPLE GPU or CPU.")
print(
"Your Paddle Fluid is installed successfully! Let's start deep Learning with Paddle Fluid now"
)
except Exception as e:
logging.warning(
"Your Paddle Fluid has some problem with multiple GPU. This may be caused by:"
"\n 1. There is only 1 GPU visible on your Device;"
"\n 2. No.1 or No.2 GPU or both of them are occupied now"
"\n 3. Wrong installation of NVIDIA-NCCL2, please follow instruction on https://github.com/NVIDIA/nccl-tests "
"\n to test your NCCL, or reinstall it following https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html"
)
print("\n Original Error is: {}".format(e))
print(
"Your Paddle Fluid is installed successfully ONLY for SINGLE GPU or CPU! "
"\n Let's start deep Learning with Paddle Fluid now")