You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/api/analysis_predictor.cc

562 lines
18 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include <glog/logging.h>
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#endif
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/profiler.h"
DECLARE_bool(profile);
namespace paddle {
using contrib::AnalysisConfig;
namespace {
bool IsPersistable(const framework::VarDesc *var) {
if (var->Persistable() &&
var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
var->GetType() != framework::proto::VarType::FETCH_LIST) {
return true;
}
return false;
}
} // namespace
bool AnalysisPredictor::Init(
const std::shared_ptr<framework::Scope> &parent_scope,
const std::shared_ptr<framework::ProgramDesc> &program) {
VLOG(30) << "Predictor::init()";
#if !defined(_WIN32)
if (FLAGS_profile) {
LOG(WARNING) << "Profiler is actived, might affect the performance";
LOG(INFO) << "You can turn off by set gflags '-profile false'";
auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
: platform::ProfilerState::kCPU;
platform::EnableProfiler(tracking_device);
}
#endif
// no matter with or without MKLDNN
paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
if (!PrepareScope(parent_scope)) {
return false;
}
if (!CreateExecutor()) {
return false;
}
if (!PrepareProgram(program)) {
return false;
}
// Prepare executor, create local variables.
if (!PrepareExecutor()) {
return true;
}
// Get the feed_target_names and fetch_target_names
PrepareFeedFetch();
return true;
}
bool AnalysisPredictor::PrepareScope(
const std::shared_ptr<framework::Scope> &parent_scope) {
if (parent_scope) {
PADDLE_ENFORCE_NOT_NULL(
parent_scope,
"Both program and parent_scope should be set in Clone mode.");
scope_ = parent_scope;
status_is_cloned_ = true;
} else {
paddle::framework::InitDevices(false);
scope_.reset(new paddle::framework::Scope());
status_is_cloned_ = false;
}
sub_scope_ = &scope_->NewScope();
return true;
}
bool AnalysisPredictor::PrepareProgram(
const std::shared_ptr<framework::ProgramDesc> &program) {
if (!program) {
if (!LoadProgramDesc()) return false;
// Optimize the program, and load parameters and modify them in the
// scope_.
// This will change the scope_ address.
if (config_.enable_ir_optim) {
status_ir_optim_enabled_ = true;
OptimizeInferenceProgram();
} else {
// If the parent_scope is passed, we assert that the persistable variables
// are already created, so just create the no persistable variables.
// If not cloned, the parameters should be loaded
// OptimizeInferenceProgram.
// So in both cases, just the local variables are needed to load, not the
// parematers.
executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);
// Load parameters
LOG(INFO) << "load parameters ";
LoadParameters();
}
} else {
// If the program is passed from external, no need to optimize it, this
// logic is used in the clone scenario.
inference_program_ = program;
}
executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);
return true;
}
bool AnalysisPredictor::CreateExecutor() {
if (config_.use_gpu) {
status_use_gpu_ = true;
place_ = paddle::platform::CUDAPlace(config_.device);
} else {
place_ = paddle::platform::CPUPlace();
}
executor_.reset(new paddle::framework::NaiveExecutor(place_));
return true;
}
bool AnalysisPredictor::PrepareExecutor() {
executor_->Prepare(sub_scope_, *inference_program_, 0,
config_.use_feed_fetch_ops);
PADDLE_ENFORCE_NOT_NULL(sub_scope_);
return true;
}
void AnalysisPredictor::SetMkldnnThreadID(int tid) {
#ifdef PADDLE_WITH_MKLDNN
platform::set_cur_thread_id(tid);
#else
LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
#endif
}
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
std::vector<PaddleTensor> *output_data,
int batch_size) {
VLOG(30) << "Predictor::predict";
inference::Timer timer;
timer.tic();
// set feed variable
framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
if (!SetFeed(inputs, scope)) {
LOG(ERROR) << "fail to set feed";
return false;
}
// Run the inference program
// if share variables, we need not create variables
executor_->Run();
// get fetch variable
if (!GetFetch(output_data, scope)) {
LOG(ERROR) << "fail to get fetches";
return false;
}
VLOG(30) << "predict cost: " << timer.toc() << "ms";
// Fix TensorArray reuse not cleaned bug.
tensor_array_batch_cleaner_.CollectTensorArrays(scope_.get());
tensor_array_batch_cleaner_.ResetTensorArray();
return true;
}
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
framework::Scope *scope) {
VLOG(30) << "Predictor::set_feed";
if (inputs.size() != feeds_.size()) {
LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
<< inputs.size();
return false;
}
// Cache the inputs memory for better concurrency performance.
feed_tensors_.resize(inputs.size());
for (size_t i = 0; i < inputs.size(); ++i) {
auto &input = feed_tensors_[i];
framework::DDim ddim = framework::make_ddim(inputs[i].shape);
void *input_ptr;
if (inputs[i].dtype == PaddleDType::INT64) {
input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
} else if (inputs[i].dtype == PaddleDType::FLOAT32) {
input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
} else {
LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
return false;
}
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
inputs[i].data.length());
// TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
framework::LoD lod;
for (auto &level : inputs[i].lod) {
lod.emplace_back(level);
}
input.set_lod(lod);
int idx = -1;
if (config_.specify_input_name) {
idx = feed_names_[inputs[i].name];
} else {
idx = boost::get<int>(feeds_[i]->GetAttr("col"));
}
framework::SetFeedVariable(scope, input, "feed", idx);
}
return true;
}
template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
PaddleTensor *output) {
// set shape.
auto shape = framework::vectorize(fetch.dims());
output->shape.assign(shape.begin(), shape.end());
// set data.
const T *data = fetch.data<T>();
int num_elems = inference::VecReduceToInt(shape);
output->data.Resize(num_elems * sizeof(T));
// The fetched tensor output by fetch op, should always in CPU memory, so just
// copy.
memcpy(output->data.data(), data, num_elems * sizeof(T));
// set lod
output->lod.clear();
for (auto &level : fetch.lod()) {
output->lod.emplace_back(level.begin(), level.end());
}
}
bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
framework::Scope *scope) {
VLOG(30) << "Predictor::get_fetch";
outputs->resize(fetchs_.size());
for (size_t i = 0; i < fetchs_.size(); ++i) {
int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
PADDLE_ENFORCE((size_t)idx == i);
framework::LoDTensor &fetch =
framework::GetFetchVariable(*scope, "fetch", idx);
auto type = fetch.type();
auto output = &(outputs->at(i));
if (type == typeid(float)) {
GetFetchOne<float>(fetch, output);
output->dtype = PaddleDType::FLOAT32;
} else if (type == typeid(int64_t)) {
GetFetchOne<int64_t>(fetch, output);
output->dtype = PaddleDType::INT64;
} else {
LOG(ERROR) << "unknown type, only support float32 and int64 now.";
}
}
return true;
}
// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
status_program_optimized_ = true;
argument_.SetUseGPU(config_.use_gpu);
argument_.SetGPUDeviceId(config_.device);
// Analyze inference_program
if (!config_.model_dir.empty()) {
argument_.SetModelDir(config_.model_dir);
} else {
PADDLE_ENFORCE(
!config_.param_file.empty(),
"Either model_dir or (param_file, prog_file) should be set.");
PADDLE_ENFORCE(!config_.prog_file.empty());
argument_.SetModelProgramPath(config_.prog_file);
argument_.SetModelParamsPath(config_.param_file);
}
if (config_.use_gpu && config_.use_tensorrt_) {
argument_.SetUseTensorRT(true);
argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
}
auto passes = config_.pass_builder()->AllPasses();
if (!config_.enable_ir_optim) passes.clear();
argument_.SetIrAnalysisPasses(passes);
argument_.SetScopeNotOwned(const_cast<framework::Scope *>(scope_.get()));
Analyzer().Run(&argument_);
PADDLE_ENFORCE(argument_.scope_valid());
VLOG(5) << "to prepare executor";
ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
inference_program_.reset(
new framework::ProgramDesc(argument_.ir_analyzed_program()));
LOG(INFO) << "== optimize end ==";
}
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
VLOG(30) << "create AnalysisConfig";
if (config.use_gpu) {
// 1. GPU memeroy
PADDLE_ENFORCE_GT(
config.fraction_of_gpu_memory, 0.f,
"fraction_of_gpu_memory in the config should be set to range (0., 1.]");
PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
std::vector<std::string> flags;
if (config.fraction_of_gpu_memory >= 0.0f ||
config.fraction_of_gpu_memory <= 0.95f) {
flags.push_back("dummpy");
std::string flag = "--fraction_of_gpu_memory_to_use=" +
std::to_string(config.fraction_of_gpu_memory);
flags.push_back(flag);
VLOG(30) << "set flag: " << flag;
framework::InitGflags(flags);
}
}
std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
if (!dynamic_cast<AnalysisPredictor *>(predictor.get())->Init(nullptr)) {
return nullptr;
}
return std::move(predictor);
}
void AnalysisPredictor::PrepareFeedFetch() {
PADDLE_ENFORCE_NOT_NULL(sub_scope_);
CreateFeedFetchVar(sub_scope_);
for (auto *op : inference_program_->Block(0).AllOps()) {
if (op->Type() == "feed") {
int idx = boost::get<int>(op->GetAttr("col"));
if (feeds_.size() <= static_cast<size_t>(idx)) {
feeds_.resize(idx + 1);
}
feeds_[idx] = op;
feed_names_[op->Output("Out")[0]] = idx;
} else if (op->Type() == "fetch") {
int idx = boost::get<int>(op->GetAttr("col"));
if (fetchs_.size() <= static_cast<size_t>(idx)) {
fetchs_.resize(idx + 1);
}
fetchs_[idx] = op;
}
}
}
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
PADDLE_ENFORCE_NOT_NULL(scope);
auto *var = scope->Var("feed");
var->GetMutable<framework::FeedFetchList>();
var = scope->Var("fetch");
var->GetMutable<framework::FeedFetchList>();
}
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
const std::string &name) {
PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
std::unique_ptr<ZeroCopyTensor> res(
new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
res->input_or_output_ = true;
res->SetName(name);
return res;
}
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
const std::string &name) {
PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
std::unique_ptr<ZeroCopyTensor> res(
new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
res->input_or_output_ = false;
res->SetName(name);
return res;
}
bool AnalysisPredictor::ZeroCopyRun() {
executor_->Run();
// Fix TensorArray reuse not cleaned bug.
tensor_array_batch_cleaner_.CollectTensorArrays(scope_.get());
tensor_array_batch_cleaner_.ResetTensorArray();
return true;
}
bool AnalysisPredictor::LoadProgramDesc() {
// Initialize the inference program
std::string filename;
if (!config_.model_dir.empty()) {
filename = config_.model_dir + "/__model__";
} else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
// All parameters are saved in a single file.
// The file names should be consistent with that used
// in Python API `fluid.io.save_inference_model`.
filename = config_.prog_file;
} else {
if (config_.model_dir.empty() && config_.prog_file.empty()) {
LOG(ERROR)
<< "Either model_dir or (prog_file, param_file) should be set.";
return false;
}
LOG(ERROR) << string::Sprintf(
"not valid model path '%s' or program path '%s'.", config_.model_dir,
config_.param_file);
return false;
}
std::string pb_content;
// Read binary
std::ifstream fin(filename, std::ios::in | std::ios::binary);
PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s", filename);
fin.seekg(0, std::ios::end);
pb_content.resize(fin.tellg());
fin.seekg(0, std::ios::beg);
fin.read(&(pb_content.at(0)), pb_content.size());
fin.close();
// Create ProgramDesc
framework::proto::ProgramDesc proto;
proto.ParseFromString(pb_content);
inference_program_.reset(new framework::ProgramDesc(proto));
return true;
}
bool AnalysisPredictor::LoadParameters() {
PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
"The inference program should be loaded first.");
const auto &global_block = inference_program_->MutableBlock(0);
// create a temporary program to load parameters.
std::unique_ptr<framework::ProgramDesc> load_program(
new framework::ProgramDesc());
framework::BlockDesc *load_block = load_program->MutableBlock(0);
std::vector<std::string> params;
for (auto *var : global_block->AllVars()) {
if (IsPersistable(var)) {
VLOG(3) << "persistable variable's name: " << var->Name();
framework::VarDesc *new_var = load_block->Var(var->Name());
new_var->SetShape(var->GetShape());
new_var->SetDataType(var->GetDataType());
new_var->SetType(var->GetType());
new_var->SetLoDLevel(var->GetLoDLevel());
new_var->SetPersistable(true);
if (!config_.param_file.empty()) {
params.push_back(new_var->Name());
} else {
// append_op
framework::OpDesc *op = load_block->AppendOp();
op->SetType("load");
op->SetOutput("Out", {new_var->Name()});
op->SetAttr("file_path", {config_.model_dir + "/" + new_var->Name()});
op->CheckAttrs();
}
}
}
if (!config_.param_file.empty()) {
// sort paramlist to have consistent ordering
std::sort(params.begin(), params.end());
// append just the load_combine op
framework::OpDesc *op = load_block->AppendOp();
op->SetType("load_combine");
op->SetOutput("Out", params);
op->SetAttr("file_path", {config_.param_file});
op->CheckAttrs();
}
// Use NaiveExecutor to Load parameters.
framework::NaiveExecutor e(place_);
e.Prepare(scope_.get(), *load_program, 0, false);
e.Run();
VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";
return true;
}
AnalysisPredictor::~AnalysisPredictor() {
#if !defined(_WIN32)
if (FLAGS_profile) {
platform::DisableProfiler(platform::EventSortingKey::kTotal,
"./profile.log");
}
#endif
if (sub_scope_) {
scope_->DeleteScope(sub_scope_);
}
}
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
auto *x = new AnalysisPredictor(config_);
x->Init(scope_, inference_program_);
return std::unique_ptr<PaddlePredictor>(x);
}
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<contrib::AnalysisConfig>(
const contrib::AnalysisConfig &config) {
return CreatePaddlePredictor<contrib::AnalysisConfig,
PaddleEngineKind::kAnalysis>(config);
}
} // namespace paddle
#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
USE_TRT_CONVERTER(split);
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
USE_TRT_CONVERTER(leaky_relu);
#endif