You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/api/paddle_api.h

234 lines
7.7 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cassert>
#include <memory>
#include <string>
#include <vector>
namespace paddle {
// Data type.
enum PaddleDType {
FLOAT32,
INT64,
// TODO(Superjomn) support more data types if needed.
};
/*
* Memory menage for PaddleTensor.
* The PaddleBuf holds a buffer for data input or output. The memory can be
* allocated by user or by PaddleBuf itself, but in any case, the PaddleBuf
* should be reused for better performance.
*
* For user allocated memory, the following API can be used:
* - PaddleBuf(void* data, size_t length) to set an external memory by
* specifying
* the memory address and length.
* - Reset(void* data, size_t length) to reset the PaddleBuf with an external
* memory.
* ATTENTION, for user allocated memory, deallocation should be done by users
* externally after the program finished. The PaddleBuf won't do any allocation
* or deallocation.
*
* To have the PaddleBuf allocate and manage the memory:
* - PaddleBuf(size_t length) will allocate a memory of size `length`.
* - Resize(size_t length) resize the memory to no less than `length`, ATTENTION
* if the allocated memory is larger than `length`, nothing will done.
*/
class PaddleBuf {
public:
// PaddleBuf allocate memory internally, and manage it.
explicit PaddleBuf(size_t length)
: data_(new char[length]), length_(length), memory_owned_(true) {}
// Set external memory, the PaddleBuf won't manage it.
PaddleBuf(void* data, size_t length)
: data_(data), length_(length), memory_owned_{false} {}
// Copy only available when memory is managed externally.
explicit PaddleBuf(const PaddleBuf&);
// Resize the memory.
void Resize(size_t length);
// Reset to external memory, with address and length set.
void Reset(void* data, size_t length);
// Tell whether the buffer is empty.
bool empty() const { return length_ == 0; }
// Get the memory address.
void* data() const { return data_; }
// Get the memory length.
size_t length() const { return length_; }
~PaddleBuf() { Free(); }
PaddleBuf& operator=(const PaddleBuf&);
PaddleBuf& operator=(PaddleBuf&&);
PaddleBuf() = default;
PaddleBuf(PaddleBuf&& other);
private:
void Free();
void* data_{nullptr}; // pointer to the data memory.
size_t length_{0}; // number of memory bytes.
bool memory_owned_{true};
};
// Basic input and output data structure for PaddlePredictor.
struct PaddleTensor {
PaddleTensor() = default;
std::string name; // variable name.
std::vector<int> shape;
PaddleBuf data; // blob of data.
PaddleDType dtype;
std::vector<std::vector<size_t>> lod; // Tensor+LoD equals LoDTensor
};
enum class PaddlePlace { kUNK = -1, kCPU, kGPU };
// Tensor without copy, currently only supports AnalysisPredictor.
class ZeroCopyTensor {
public:
void Reshape(const std::vector<int>& shape);
// Get the memory in CPU or GPU with specific data type, should Reshape first
// to tell the data size.
// Once can directly call this data to feed the data.
// This is for write the input tensor.
template <typename T>
T* mutable_data(PaddlePlace place);
// Get the memory directly, will return the place and memory size by pointer.
// This is for reading the output tensor.
template <typename T>
T* data(PaddlePlace* place, int* size) const;
std::vector<int64_t> shape() const;
void SetLoD(const std::vector<std::vector<size_t>>& x);
std::vector<std::vector<size_t>> lod() const;
const std::string& name() const { return name_; }
protected:
explicit ZeroCopyTensor(void* scope) : scope_{scope} {}
void SetName(const std::string& name) { name_ = name; }
void* FindTensor() const;
private:
std::string name_;
bool input_or_output_;
friend class AnalysisPredictor;
void* scope_{nullptr};
};
/*
* A simple Inference API for Paddle.
*/
class PaddlePredictor {
public:
struct Config;
PaddlePredictor() = default;
PaddlePredictor(const PaddlePredictor&) = delete;
PaddlePredictor& operator=(const PaddlePredictor&) = delete;
// Predict an record.
// The caller should be responsible for allocating and releasing the memory of
// `inputs`. `inputs` should be available until Run returns. Caller should be
// responsible for the output tensor's buffer, either allocated or passed from
// outside.
virtual bool Run(const std::vector<PaddleTensor>& inputs,
std::vector<PaddleTensor>* output_data,
int batch_size = -1) = 0;
// Zero copy input and output optimization.
// Get the input or output tensors, and operate on their memory directly,
// without copy.
virtual std::unique_ptr<ZeroCopyTensor> GetInputTensor(
const std::string& name) {
return nullptr;
}
virtual std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
const std::string& name) {
return nullptr;
}
virtual bool ZeroCopyRun() { return false; }
// Clone a predictor that share the model weights, the Cloned predictor should
// be thread-safe.
virtual std::unique_ptr<PaddlePredictor> Clone() = 0;
// Destroy the Predictor.
virtual ~PaddlePredictor() = default;
// The common configs for all the predictors.
struct Config {
std::string model_dir; // path to the model directory.
};
};
struct NativeConfig : public PaddlePredictor::Config {
// GPU related fields.
bool use_gpu{false};
int device{0};
float fraction_of_gpu_memory{-1.f}; // Change to a float in (0,1] if needed.
// Specify the exact path of program and parameter files.
std::string prog_file;
std::string param_file;
// Specify the variable's name of each input if input tensors don't follow the
// `feeds` and `fetches` of the phase `save_inference_model`.
bool specify_input_name{false};
// Set and get the number of cpu math library threads.
void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads) {
cpu_math_library_num_threads_ = cpu_math_library_num_threads;
}
int cpu_math_library_num_threads() const {
return cpu_math_library_num_threads_;
}
protected:
// number of cpu math library (such as MKL, OpenBlas) threads for each
// instance.
int cpu_math_library_num_threads_{1};
};
// A factory to help create different predictors.
//
// Usage:
//
// NativeConfig config;
// ... // change the configs.
// auto native_predictor = CreatePaddlePredictor(config);
//
// FOR EXTENSION DEVELOPER:
// Different predictors are designated by config type. Similar configs can be
// merged, but there shouldn't be a huge config containing different fields for
// more than one kind of predictors.
template <typename ConfigT>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
// NOTE The following APIs are too trivial, we will discard it in the following
// versions.
enum class PaddleEngineKind {
kNative = 0, // Use the native Fluid facility.
kAutoMixedTensorRT, // Automatically mix Fluid with TensorRT.
kAnalysis, // More optimization.
kAnakin // Use Anakin for inference, not mature yet.
};
template <typename ConfigT, PaddleEngineKind engine>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
int PaddleDtypeSize(PaddleDType dtype);
} // namespace paddle