You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/api/api_anakin_engine.cc

259 lines
8.4 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/api/api_anakin_engine.h"
#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#endif
#include <mkl_service.h>
#include <omp.h>
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "framework/core/net/net.h"
#include "framework/operators/ops.h"
#include "saber/funcs/timer.h"
namespace paddle {
template <typename Target>
PaddleInferenceAnakinPredictor<Target>::PaddleInferenceAnakinPredictor(
const AnakinConfig &config) {
CHECK(Init(config));
}
template <>
PaddleInferenceAnakinPredictor<anakin::X86>::PaddleInferenceAnakinPredictor(
const AnakinConfig &config) {
omp_set_dynamic(0);
omp_set_num_threads(1);
mkl_set_num_threads(1);
CHECK(Init(config));
}
template <typename Target>
bool PaddleInferenceAnakinPredictor<Target>::Init(const AnakinConfig &config) {
if (!(graph_.load(config.model_file))) {
VLOG(3) << "fail to load graph from " << config.model_file;
return false;
}
auto inputs = graph_.get_ins();
for (auto &input_str : inputs) {
graph_.ResetBatchSize(input_str, config.max_batch_size);
max_batch_size_ = config.max_batch_size;
}
// optimization for graph
if (!(graph_.Optimize())) {
return false;
}
// construct executer
if (executor_p_ == nullptr) {
executor_p_ = new anakin::Net<Target, anakin::saber::AK_FLOAT,
anakin::Precision::FP32>(graph_, true);
}
return true;
}
template <typename Target>
bool PaddleInferenceAnakinPredictor<Target>::Run(
const std::vector<PaddleTensor> &inputs,
std::vector<PaddleTensor> *output_data, int batch_size) {
for (const auto &input : inputs) {
if (input.dtype != PaddleDType::FLOAT32) {
VLOG(3) << "Only support float type inputs. " << input.name
<< "'s type is not float";
return false;
}
auto d_tensor_in_p = executor_p_->get_in(input.name);
auto net_shape = d_tensor_in_p->shape();
if (net_shape.size() != input.shape.size()) {
VLOG(3) << " input " << input.name
<< "'s shape size should be equal to that of net";
return false;
}
int sum = 1;
for_each(input.shape.begin(), input.shape.end(), [&](int n) { sum *= n; });
if (sum > net_shape.count()) {
graph_.Reshape(input.name, input.shape);
delete executor_p_;
executor_p_ = new anakin::Net<Target, anakin::saber::AK_FLOAT,
anakin::Precision::FP32>(graph_, true);
d_tensor_in_p = executor_p_->get_in(input.name);
}
anakin::saber::Shape tmp_shape;
for (auto s : input.shape) {
tmp_shape.push_back(s);
}
d_tensor_in_p->reshape(tmp_shape);
if (input.lod.size() > 0) {
if (input.lod.size() > 1) {
VLOG(3) << " input lod first dim should <=1, but you set "
<< input.lod.size();
return false;
}
std::vector<int> offset(input.lod[0].begin(), input.lod[0].end());
d_tensor_in_p->set_seq_offset(offset);
VLOG(3) << "offset.size(): " << offset.size();
for (int i = 0; i < offset.size(); i++) {
VLOG(3) << offset[i];
}
}
float *d_data_p = d_tensor_in_p->mutable_data();
#ifdef PADDLE_WITH_CUDA
if (std::is_same<anakin::NV, Target>::value) {
if (cudaMemcpy(d_data_p, static_cast<float *>(input.data.data()),
d_tensor_in_p->valid_size() * sizeof(float),
cudaMemcpyHostToDevice) != 0) {
VLOG(3) << "copy data from CPU to GPU error";
return false;
}
}
#endif
if (std::is_same<anakin::X86, Target>::value) {
memcpy(d_data_p, static_cast<float *>(input.data.data()),
d_tensor_in_p->valid_size() * sizeof(float));
}
}
#ifdef PADDLE_WITH_CUDA
cudaDeviceSynchronize();
executor_p_->prediction();
cudaDeviceSynchronize();
#endif
if (output_data->empty()) {
VLOG(3) << "At least one output should be set with tensors' names.";
return false;
}
for (auto &output : *output_data) {
auto *tensor = executor_p_->get_out(output.name);
output.shape = tensor->valid_shape();
if (output.data.length() < tensor->valid_size() * sizeof(float)) {
output.data.Resize(tensor->valid_size() * sizeof(float));
}
#if PADDLE_WITH_CUDA
if (std::is_same<anakin::NV, Target>::value) {
// Copy data from GPU -> CPU
if (cudaMemcpy(output.data.data(), tensor->mutable_data(),
tensor->valid_size() * sizeof(float),
cudaMemcpyDeviceToHost) != 0) {
VLOG(3) << "copy data from GPU to CPU error";
return false;
}
}
#endif
if (std::is_same<anakin::X86, Target>::value) {
memcpy(output.data.data(), tensor->mutable_data(),
tensor->valid_size() * sizeof(float));
}
}
return true;
}
template <typename Target>
anakin::Net<Target, anakin::saber::AK_FLOAT, anakin::Precision::FP32>
&PaddleInferenceAnakinPredictor<Target>::get_executer() {
return *executor_p_;
}
// the cloned new Predictor of anakin share the same net weights from original
// Predictor
template <typename Target>
std::unique_ptr<PaddlePredictor>
PaddleInferenceAnakinPredictor<Target>::Clone() {
VLOG(3) << "Anakin Predictor::clone";
std::unique_ptr<PaddlePredictor> cls(
new PaddleInferenceAnakinPredictor<Target>());
// construct executer from other graph
auto anakin_predictor_p =
dynamic_cast<PaddleInferenceAnakinPredictor<Target> *>(cls.get());
if (!anakin_predictor_p) {
VLOG(3) << "fail to call Init";
return nullptr;
}
anakin_predictor_p->get_executer().init(graph_);
return std::move(cls);
}
template class PaddleInferenceAnakinPredictor<anakin::NV>;
template class PaddleInferenceAnakinPredictor<anakin::X86>;
// A factory to help create difference predictor.
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
AnakinConfig, PaddleEngineKind::kAnakin>(const AnakinConfig &config) {
VLOG(3) << "Anakin Predictor create.";
if (config.target_type == AnakinConfig::NVGPU) {
VLOG(3) << "Anakin Predictor create on [ NVIDIA GPU ].";
std::unique_ptr<PaddlePredictor> x(
new PaddleInferenceAnakinPredictor<anakin::NV>(config));
return x;
} else if (config.target_type == AnakinConfig::X86) {
VLOG(3) << "Anakin Predictor create on [ Intel X86 ].";
std::unique_ptr<PaddlePredictor> x(
new PaddleInferenceAnakinPredictor<anakin::X86>(config));
return x;
} else {
VLOG(3) << "Anakin Predictor create on unknown platform.";
return nullptr;
}
}
#ifdef PADDLE_ANAKIN_ENABLE_OP_TIMER
template <typename Target>
using executor_t =
anakin::Net<Target, anakin::saber::AK_FLOAT, anakin::Precision::FP32>;
template <typename Target>
void DisplayOpTimer(executor_t<Target> *net_executor, int epoch) {
std::vector<float> op_time = net_executor->get_op_time();
auto exec_funcs = net_executor->get_exec_funcs();
auto op_param = net_executor->get_op_param();
for (int i = 0; i < op_time.size(); i++) {
LOG(INFO) << "name: " << exec_funcs[i].name
<< " op_type: " << exec_funcs[i].op_name
<< " op_param: " << op_param[i] << " time " << op_time[i] / epoch;
}
std::map<std::string, float> op_map;
for (int i = 0; i < op_time.size(); i++) {
auto it = op_map.find(op_param[i]);
if (it != op_map.end())
op_map[op_param[i]] += op_time[i];
else
op_map.insert(std::pair<std::string, float>(op_param[i], op_time[i]));
}
for (auto it = op_map.begin(); it != op_map.end(); ++it) {
LOG(INFO) << it->first << " " << (it->second) / epoch << " ms";
}
}
#endif
template <typename Target>
PaddleInferenceAnakinPredictor<Target>::~PaddleInferenceAnakinPredictor() {
#ifdef PADDLE_ANAKIN_ENABLE_OP_TIMER
DisplayOpTimer<Target>(executor_p_, max_batch_size_);
#endif
delete executor_p_;
executor_p_ = nullptr;
}
} // namespace paddle