You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
67 lines
2.1 KiB
67 lines
2.1 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <glog/logging.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "gflags/gflags.h"
|
|
#include "paddle/fluid/inference/api/paddle_inference_api.h"
|
|
|
|
DEFINE_string(model, "", "Directory of the inference model(mobile_v2).");
|
|
|
|
namespace paddle {
|
|
|
|
AnakinConfig GetConfig() {
|
|
AnakinConfig config;
|
|
// using AnakinConfig::X86 if you need to use cpu to do inference
|
|
config.target_type = AnakinConfig::NVGPU;
|
|
config.model_file = FLAGS_model;
|
|
config.device = 0;
|
|
config.max_batch_size = 1;
|
|
return config;
|
|
}
|
|
|
|
TEST(inference, anakin) {
|
|
AnakinConfig config = GetConfig();
|
|
auto predictor =
|
|
CreatePaddlePredictor<AnakinConfig, PaddleEngineKind::kAnakin>(config);
|
|
|
|
float data[1 * 3 * 224 * 224] = {1.0f};
|
|
PaddleTensor tensor;
|
|
tensor.name = "input_0";
|
|
tensor.shape = std::vector<int>({1, 3, 224, 224});
|
|
tensor.data = PaddleBuf(data, sizeof(data));
|
|
tensor.dtype = PaddleDType::FLOAT32;
|
|
|
|
// For simplicity, we set all the slots with the same data.
|
|
std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);
|
|
|
|
PaddleTensor tensor_out;
|
|
tensor_out.name = "prob_out";
|
|
tensor_out.shape = std::vector<int>({});
|
|
tensor_out.data = PaddleBuf();
|
|
tensor_out.dtype = PaddleDType::FLOAT32;
|
|
|
|
std::vector<PaddleTensor> outputs(1, tensor_out);
|
|
|
|
ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
|
|
|
|
float* data_o = static_cast<float*>(outputs[0].data.data());
|
|
for (size_t j = 0; j < outputs[0].data.length(); ++j) {
|
|
LOG(INFO) << "output[" << j << "]: " << data_o[j];
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|