You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
497 lines
20 KiB
497 lines
20 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/fusion_lstm_op.h"
|
|
#include <string>
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
#include "paddle/fluid/operators/math/cpu_vec.h"
|
|
#include "paddle/fluid/operators/math/detail/activation_functions.h"
|
|
#include "paddle/fluid/operators/math/fc_compute.h"
|
|
#include "paddle/fluid/operators/math/lstm_compute.h"
|
|
#include "paddle/fluid/operators/math/sequence2batch.h"
|
|
#include "paddle/fluid/platform/cpu_info.h"
|
|
|
|
DEFINE_bool(seq_mode, true, "Use sequence mode");
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("WeightX"),
|
|
"Input(WeightX) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("WeightH"),
|
|
"Input(WeightH) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Bias"),
|
|
"Input(Bias) of LSTM should not be null.");
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("XX"),
|
|
"Output(XX) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
|
|
"Output(Hidden) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Cell"),
|
|
"Output(Cell) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("BatchedGate"),
|
|
"Output(BatchedGate) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
|
|
"Output(BatchedGate) of LSTM should not be null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
|
|
|
|
if (ctx->HasInput("H0")) {
|
|
PADDLE_ENFORCE(ctx->HasInput("C0"),
|
|
"Input(Cell) and Input(Hidden) of LSTM should not "
|
|
"be null at the same time.");
|
|
auto h_dims = ctx->GetInputDim("H0");
|
|
auto c_dims = ctx->GetInputDim("C0");
|
|
PADDLE_ENFORCE(h_dims == c_dims,
|
|
"The dimension of Input(H0) and Input(C0) "
|
|
"should be the same.");
|
|
}
|
|
|
|
auto wx_dims = ctx->GetInputDim("WeightX");
|
|
PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
|
|
"The rank of Input(WeightX) should be 2.");
|
|
PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
|
|
"The first dimension of Input(WeightX) "
|
|
"should be %d.",
|
|
x_dims[1]);
|
|
|
|
int frame_size = wx_dims[1] / 4;
|
|
auto wh_dims = ctx->GetInputDim("WeightH");
|
|
PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
|
|
"The rank of Input(WeightH) should be 2.");
|
|
PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
|
|
"The first dimension of Input(WeightH) "
|
|
"should be %d.",
|
|
frame_size);
|
|
PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
|
|
"The second dimension of Input(WeightH) "
|
|
"should be 4 * %d.",
|
|
frame_size);
|
|
|
|
auto b_dims = ctx->GetInputDim("Bias");
|
|
PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
|
|
PADDLE_ENFORCE_EQ(b_dims[0], 1,
|
|
"The first dimension of Input(Bias) should be 1.");
|
|
|
|
PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_peepholes"),
|
|
"Do not support peephole yet.");
|
|
PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
|
|
"The second dimension of Input(Bias) should be "
|
|
"4 * %d if disable peepholes connection",
|
|
frame_size);
|
|
|
|
framework::DDim out_dims({x_dims[0], frame_size});
|
|
ctx->SetOutputDim("Hidden", out_dims);
|
|
ctx->SetOutputDim("Cell", out_dims);
|
|
ctx->SetOutputDim("BatchedGate", {x_dims[0], wx_dims[1]});
|
|
ctx->SetOutputDim("BatchCellPreAct", out_dims);
|
|
ctx->ShareLoD("X", "Hidden");
|
|
ctx->ShareLoD("X", "Cell");
|
|
|
|
int xx_width;
|
|
if (FLAGS_seq_mode) {
|
|
xx_width = wx_dims[1];
|
|
} else {
|
|
xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
|
|
}
|
|
ctx->SetOutputDim("XX", {x_dims[0], xx_width});
|
|
ctx->ShareLoD("X", "XX");
|
|
}
|
|
|
|
framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
|
|
ctx.device_context());
|
|
}
|
|
|
|
void FusionLSTMOpMaker::Make() {
|
|
AddInput("X",
|
|
"(LoDTensor) the input is a LodTensor, which support "
|
|
"variable-time length input sequence. The underlying tensor in "
|
|
"this LoDTensor is a matrix with shape (T X M), where T is the "
|
|
"total time steps in this mini-batch, M is the dim size of x.");
|
|
AddInput("WeightX",
|
|
"(Tensor) the learnable weights of X."
|
|
" - The shape is (M x 4D), where M is the dim size of x, D is the "
|
|
"hidden size. "
|
|
" - Weight = {W_cx, W_ix, W_fx, W_ox}");
|
|
AddInput("WeightH",
|
|
"(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
|
|
" - The shape is (D x 4D), where D is the hidden size. "
|
|
" - Weight = {W_ch, W_ih, W_fh, W_oh}");
|
|
AddInput("Bias",
|
|
"(Tensor) the learnable weights. Almost same as LSTMOp"
|
|
"Note: we should add the fc bias into this (1x4D) in bias."
|
|
"input-hidden bias weight and peephole connections weight if "
|
|
"setting `use_peepholes` True. "
|
|
"1. `use_peepholes = False` "
|
|
" - The shape is (1 x 4D). "
|
|
" - Bias = {b_c, b_i, b_f, b_o}."
|
|
"2. `use_peepholes = True` "
|
|
" - The shape is (1 x 7D). "
|
|
" - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
|
|
AddInput("H0",
|
|
"(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
|
|
"optional "
|
|
"input. This is a tensor with shape (N x D), where N is the "
|
|
"batch size and D is the hidden size.")
|
|
.AsDispensable();
|
|
AddInput("C0",
|
|
"(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
|
|
"optional "
|
|
"input. This is a tensor with shape (N x D), where N is the "
|
|
"batch size. `H0` and `C0` can be NULL but only at the same time.")
|
|
.AsDispensable();
|
|
AddOutput("Hidden",
|
|
"(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
|
|
"The shape is (T x D), and lod is the same with the `Input`.");
|
|
AddOutput("Cell",
|
|
"(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
|
|
"The shape is (T x D), and lod is the same with the `Input`.");
|
|
AddOutput("XX",
|
|
"(LoDTensor) the result after X * WeightX (size is T x 4D)"
|
|
" or batched_X (size is T x M), this will be automatically chosen,"
|
|
" where T is the total time steps in this mini-batch,"
|
|
" D is the hidden size, M is the dim size of x input.")
|
|
.AsIntermediate();
|
|
AddOutput("BatchedGate", "(LoDTensor) (same as LSTMOp).").AsIntermediate();
|
|
AddOutput("BatchCellPreAct", "(LoDTensor) (same as LSTMOp).")
|
|
.AsIntermediate();
|
|
AddAttr<bool>("use_peepholes",
|
|
"(bool, defalut: True) "
|
|
"whether to enable diagonal/peephole connections.")
|
|
.SetDefault(true);
|
|
AddAttr<bool>("is_reverse",
|
|
"(bool, defalut: False) "
|
|
"whether to compute reversed LSTM.")
|
|
.SetDefault(false);
|
|
AddAttr<std::string>("gate_activation",
|
|
"(string, default: sigmoid)"
|
|
"The activation for input gate, forget gate and output "
|
|
"gate, `sigmoid` by default.")
|
|
.SetDefault("sigmoid")
|
|
.InEnum({"sigmoid", "tanh", "relu", "identity"});
|
|
AddAttr<std::string>("cell_activation",
|
|
"(string, default: tanh)"
|
|
"The activation for cell output, `tanh` by defalut.")
|
|
.SetDefault("tanh")
|
|
.InEnum({"sigmoid", "tanh", "relu", "identity"});
|
|
AddAttr<std::string>("candidate_activation",
|
|
"(string, default: tanh)"
|
|
"The activation for candidate hidden state, "
|
|
"`tanh` by default.")
|
|
.SetDefault("tanh")
|
|
.InEnum({"sigmoid", "tanh", "relu", "identity"});
|
|
AddComment(R"DOC(
|
|
Fusion Long-Short Term Memory (LSTM) Operator.
|
|
This operator fuse the X into LSTM, more details can refer to LSTM op.
|
|
)DOC");
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
inline void ReorderInitState(const DeviceContext& ctx,
|
|
const framework::Tensor& src,
|
|
framework::Vector<size_t> index_lod,
|
|
framework::Tensor* dst, bool indexed_src) {
|
|
math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
|
|
dst->mutable_data<T>(src.dims(), ctx.GetPlace());
|
|
// TODO(TJ): check mem copy perf
|
|
row_shuffle(ctx, src, index_lod, dst, indexed_src);
|
|
}
|
|
|
|
template <typename T>
|
|
class FuisonLSTMKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void SeqCompute(const framework::ExecutionContext& ctx) const {
|
|
using DeviceContext = paddle::platform::CPUDeviceContext;
|
|
auto* x = ctx.Input<LoDTensor>("X");
|
|
auto* h0 = ctx.Input<Tensor>("H0");
|
|
auto* c0 = ctx.Input<Tensor>("C0");
|
|
auto* wx = ctx.Input<Tensor>("WeightX");
|
|
auto* wh = ctx.Input<Tensor>("WeightH");
|
|
auto* bias = ctx.Input<Tensor>("Bias");
|
|
|
|
auto* xx = ctx.Output<LoDTensor>("XX");
|
|
auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
|
|
auto* cell_out = ctx.Output<LoDTensor>("Cell");
|
|
bool is_reverse = ctx.Attr<bool>("is_reverse");
|
|
|
|
std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand;
|
|
auto& act_gate_str = ctx.Attr<std::string>("gate_activation");
|
|
auto& act_cell_str = ctx.Attr<std::string>("cell_activation");
|
|
auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");
|
|
if (platform::jit::MayIUse(platform::jit::avx)) {
|
|
math::VecActivations<T, platform::jit::avx> act_functor;
|
|
act_gate = act_functor(act_gate_str);
|
|
act_cell = act_functor(act_cell_str);
|
|
act_cand = act_functor(act_cand_str);
|
|
} else {
|
|
math::VecActivations<T, platform::jit::isa_any> act_functor;
|
|
act_gate = act_functor(act_gate_str);
|
|
act_cell = act_functor(act_cell_str);
|
|
act_cand = act_functor(act_cand_str);
|
|
}
|
|
|
|
auto x_lod = x->lod();
|
|
auto x_dims = x->dims(); // T x M
|
|
auto wh_dims = wh->dims(); // D x 4D
|
|
const int total_T = x_dims[0];
|
|
const int N = x_lod[0].size() - 1; // batch size
|
|
const int M = x_dims[1]; // x frame size
|
|
const int D = wh_dims[0];
|
|
const int D2 = D * 2;
|
|
const int D3 = D * 3;
|
|
const int D4 = wh_dims[1];
|
|
|
|
const T* x_data = x->data<T>();
|
|
const T* h0_data = h0 ? h0->data<T>() : NULL;
|
|
const T* c0_data = c0 ? c0->data<T>() : NULL;
|
|
const T* wx_data = wx->data<T>();
|
|
const T* wh_data = wh->data<T>();
|
|
T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
|
|
T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
|
|
T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto blas = math::GetBlas<DeviceContext, T>(ctx);
|
|
math::FCCompute<DeviceContext, T>(blas, total_T, D4, M, x_data, wx_data,
|
|
xx_data, bias->data<T>());
|
|
int xx_offset = D4;
|
|
int gate_offset = D;
|
|
if (is_reverse) {
|
|
const int offset = (total_T - 1) * D;
|
|
xx_data = xx_data + offset * 4;
|
|
hidden_out_data = hidden_out_data + offset;
|
|
cell_out_data = cell_out_data + offset;
|
|
xx_offset = -D4;
|
|
gate_offset = -D;
|
|
}
|
|
|
|
auto move_step = [&]() {
|
|
xx_data = xx_data + xx_offset;
|
|
hidden_out_data = hidden_out_data + gate_offset;
|
|
cell_out_data = cell_out_data + gate_offset;
|
|
};
|
|
|
|
for (int i = 0; i < N; ++i) {
|
|
int bid = is_reverse ? N - 1 - i : i;
|
|
int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
|
|
const T* prev_cell_data = NULL;
|
|
const T* prev_hidden_data = NULL;
|
|
int tstart = 0;
|
|
if (h0_data) {
|
|
prev_hidden_data = h0_data + bid * D;
|
|
prev_cell_data = c0_data + bid * D;
|
|
} else {
|
|
// W_ch, W_ih, W_fh, W_oh
|
|
act_gate(D3, xx_data + D, xx_data + D);
|
|
act_cand(D, xx_data, xx_data);
|
|
// cell out= input*tilde
|
|
blas.VMUL(D, xx_data, xx_data + D, cell_out_data);
|
|
// hidden out= act_state(cellout) * outgate
|
|
act_cell(D, cell_out_data, xx_data + D2);
|
|
blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);
|
|
|
|
// prev
|
|
prev_hidden_data = hidden_out_data;
|
|
prev_cell_data = cell_out_data;
|
|
tstart = 1;
|
|
|
|
move_step();
|
|
}
|
|
for (int step = tstart; step < seq_len; ++step) {
|
|
blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
|
|
prev_hidden_data, D, wh_data, D4, static_cast<T>(1), xx_data,
|
|
D4);
|
|
|
|
// W_ch, W_ih, W_fh, W_oh
|
|
act_gate(D3, xx_data + D, xx_data + D);
|
|
act_cand(D, xx_data, xx_data);
|
|
|
|
// a = forget * prev_cell
|
|
blas.VMUL(D, xx_data + D2, prev_cell_data, xx_data + D2);
|
|
|
|
// b = input * tilde
|
|
blas.VMUL(D, xx_data, xx_data + D, xx_data + D);
|
|
|
|
// cell out= a+b
|
|
blas.VADD(D, xx_data + D, xx_data + D2, cell_out_data);
|
|
|
|
// hidden out= act_state(cellout) * outgate
|
|
act_cell(D, cell_out_data, xx_data + D2);
|
|
blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);
|
|
|
|
// prev
|
|
prev_hidden_data = hidden_out_data;
|
|
prev_cell_data = cell_out_data;
|
|
|
|
move_step();
|
|
}
|
|
}
|
|
}
|
|
|
|
void BatchCompute(const framework::ExecutionContext& ctx) const {
|
|
using DeviceContext = platform::CPUDeviceContext;
|
|
auto* x = ctx.Input<LoDTensor>("X");
|
|
auto* wx = ctx.Input<Tensor>("WeightX");
|
|
auto* wh = ctx.Input<Tensor>("WeightH");
|
|
auto* bias = ctx.Input<Tensor>("Bias");
|
|
auto* hidden_t0 = ctx.Input<Tensor>("H0");
|
|
auto* cell_t0 = ctx.Input<Tensor>("C0");
|
|
|
|
auto* xx = ctx.Output<LoDTensor>("XX");
|
|
auto* batched_gate = ctx.Output<LoDTensor>("BatchedGate");
|
|
auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
|
|
auto* cell_out = ctx.Output<LoDTensor>("Cell");
|
|
bool is_reverse = ctx.Attr<bool>("is_reverse");
|
|
|
|
T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
|
|
T* batched_gate_data = batched_gate->mutable_data<T>(ctx.GetPlace());
|
|
hidden_out->mutable_data<T>(ctx.GetPlace());
|
|
cell_out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
const T* x_data = x->data<T>();
|
|
const T* wx_data = wx->data<T>();
|
|
auto x_dims = x->dims();
|
|
auto wx_dims = wx->dims();
|
|
|
|
math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
|
|
if (x_dims[1] > wx_dims[1]) {
|
|
math::FCCompute<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1],
|
|
x_data, wx_data, xx_data,
|
|
bias->data<T>());
|
|
to_batch(dev_ctx, *xx, batched_gate, true, is_reverse);
|
|
} else {
|
|
to_batch(dev_ctx, *x, xx, true, is_reverse);
|
|
batched_gate->set_lod(xx->lod());
|
|
math::FCCompute<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1],
|
|
xx_data, wx_data, batched_gate_data,
|
|
bias->data<T>());
|
|
}
|
|
|
|
int frame_size = static_cast<int>(wx_dims[1] / 4);
|
|
framework::DDim out_dims({x_dims[0], frame_size});
|
|
math::LstmMetaValue<T> lstm_value;
|
|
// no peephole
|
|
lstm_value.check_ig = nullptr;
|
|
lstm_value.check_fg = nullptr;
|
|
lstm_value.check_og = nullptr;
|
|
lstm_value.prev_state_value = nullptr;
|
|
Tensor ordered_c0;
|
|
|
|
framework::Vector<size_t> order(batched_gate->lod()[2]);
|
|
|
|
if (cell_t0) {
|
|
// Since the batch computing for LSTM reorders the input sequence
|
|
// according to their length. The initialized cell state also needs
|
|
// to reorder.
|
|
ReorderInitState<DeviceContext, T>(dev_ctx, *cell_t0, order, &ordered_c0,
|
|
true);
|
|
lstm_value.prev_state_value = ordered_c0.data<T>();
|
|
}
|
|
|
|
// Use the local variable as here.
|
|
LoDTensor batch_hidden, batch_cell;
|
|
auto* batch_cell_pre_act = ctx.Output<LoDTensor>("BatchCellPreAct");
|
|
batch_hidden.mutable_data<T>(out_dims, ctx.GetPlace());
|
|
batch_cell.mutable_data<T>(out_dims, ctx.GetPlace());
|
|
batch_cell_pre_act->mutable_data<T>(out_dims, ctx.GetPlace());
|
|
|
|
auto batch_starts = batched_gate->lod()[0];
|
|
size_t max_seq_len = batch_starts.size() - 1;
|
|
auto gate_act = math::detail::GetActivationType(
|
|
ctx.Attr<std::string>("gate_activation"));
|
|
auto cell_act = math::detail::GetActivationType(
|
|
ctx.Attr<std::string>("cell_activation"));
|
|
auto cand_act = math::detail::GetActivationType(
|
|
ctx.Attr<std::string>("candidate_activation"));
|
|
|
|
for (size_t n = 0; n < max_seq_len; n++) {
|
|
int bstart = static_cast<int>(batch_starts[n]);
|
|
int bend = static_cast<int>(batch_starts[n + 1]);
|
|
|
|
Tensor gate_t = batched_gate->Slice(bstart, bend);
|
|
Tensor out_t = batch_hidden.Slice(bstart, bend);
|
|
Tensor cell_t = batch_cell.Slice(bstart, bend);
|
|
Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend);
|
|
|
|
int cur_batch_size = bend - bstart;
|
|
|
|
if (n > 0) {
|
|
int pre_h_start = static_cast<int>(batch_starts[n - 1]);
|
|
int pre_h_end = pre_h_start + cur_batch_size;
|
|
auto pre_hidden_t = batch_hidden.Slice(pre_h_start, pre_h_end);
|
|
// TODO(TJ): use gemm directly
|
|
blas.MatMul(pre_hidden_t, false, *wh, false, static_cast<T>(1.0),
|
|
&gate_t, static_cast<T>(1.0));
|
|
} else if (hidden_t0) {
|
|
// TODO(TJ): move h0 outside for
|
|
// If n == 0 and there is no initialized hidden state, that is to say
|
|
// the H0 is zeros, the calculation W_h * H0 will be skiped.
|
|
// If n == 0 and there is initialized hidden state, calculate W_h * H0.
|
|
|
|
// Since the batch computing for LSTM reorders the input sequence
|
|
// according to their length. The initialized hidden state also needs
|
|
// to reorder.
|
|
Tensor ordered_h0;
|
|
ReorderInitState<DeviceContext, T>(dev_ctx, *hidden_t0, order,
|
|
&ordered_h0, true);
|
|
// TODO(TJ): use gemm directly
|
|
blas.MatMul(ordered_h0, false, *wh, false, static_cast<T>(1.0), &gate_t,
|
|
static_cast<T>(1.0));
|
|
}
|
|
|
|
lstm_value.gate_value = gate_t.data<T>();
|
|
lstm_value.output_value = out_t.data<T>();
|
|
lstm_value.state_value = cell_t.data<T>();
|
|
lstm_value.state_active_value = cell_pre_act_t.data<T>();
|
|
math::LstmUnitFunctor<DeviceContext, T>::compute(
|
|
dev_ctx, lstm_value, frame_size, cur_batch_size, gate_act, cell_act,
|
|
cand_act);
|
|
lstm_value.prev_state_value = lstm_value.state_value;
|
|
}
|
|
|
|
math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
|
|
batch_hidden.set_lod(batched_gate->lod());
|
|
// restore the output hidden in LoDTensor from the batch hidden
|
|
to_seq(dev_ctx, batch_hidden, hidden_out);
|
|
|
|
batch_cell.set_lod(batched_gate->lod());
|
|
// restore the output cell state in LoDTensor from the batch cell
|
|
to_seq(dev_ctx, batch_cell, cell_out);
|
|
}
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
if (FLAGS_seq_mode) {
|
|
SeqCompute(ctx);
|
|
} else {
|
|
BatchCompute(ctx);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
|
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
|
|
ops::FuisonLSTMKernel<double>);
|