You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/lite/test_tensor_utils.cc

117 lines
4.3 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/inference/lite/tensor_utils.h"
namespace paddle {
namespace inference {
namespace lite {
namespace utils {
using paddle::lite_api::TargetType;
using paddle::lite_api::PrecisionType;
using paddle::lite_api::DataLayoutType;
TEST(LiteEngineOp, GetNativePlace) {
::testing::FLAGS_gtest_death_test_style = "threadsafe";
platform::Place GetNativePlace(const TargetType& type, int id = 0);
EXPECT_TRUE(platform::is_cpu_place(GetNativePlace(TargetType::kHost)));
EXPECT_TRUE(platform::is_gpu_place(GetNativePlace(TargetType::kCUDA)));
ASSERT_DEATH(GetNativePlace(TargetType::kUnk), "");
}
TEST(LiteEngineOp, GetLiteTargetType) {
TargetType GetLiteTargetType(const platform::Place& place);
ASSERT_EQ(GetLiteTargetType(platform::CPUPlace()), TargetType::kHost);
ASSERT_EQ(GetLiteTargetType(platform::CUDAPlace(0)), TargetType::kCUDA);
}
TEST(LiteEngineOp, GetLitePrecisionType) {
::testing::FLAGS_gtest_death_test_style = "threadsafe";
PrecisionType GetLitePrecisionType(framework::proto::VarType::Type type);
ASSERT_EQ(GetLitePrecisionType(framework::proto::VarType_Type_FP32),
PrecisionType::kFloat);
ASSERT_EQ(GetLitePrecisionType(framework::proto::VarType_Type_INT8),
PrecisionType::kInt8);
ASSERT_EQ(GetLitePrecisionType(framework::proto::VarType_Type_INT32),
PrecisionType::kInt32);
ASSERT_DEATH(
GetLitePrecisionType(framework::proto::VarType_Type_SELECTED_ROWS), "");
}
TEST(LiteEngineOp, GetNativePrecisionType) {
::testing::FLAGS_gtest_death_test_style = "threadsafe";
framework::proto::VarType::Type GetNativePrecisionType(
const PrecisionType& type);
ASSERT_EQ(GetNativePrecisionType(PrecisionType::kFloat),
framework::proto::VarType_Type_FP32);
ASSERT_EQ(GetNativePrecisionType(PrecisionType::kInt8),
framework::proto::VarType_Type_INT8);
ASSERT_EQ(GetNativePrecisionType(PrecisionType::kInt32),
framework::proto::VarType_Type_INT32);
ASSERT_DEATH(GetNativePrecisionType(PrecisionType::kUnk), "");
}
TEST(LiteEngineOp, GetNativeLayoutType) {
::testing::FLAGS_gtest_death_test_style = "threadsafe";
framework::DataLayout GetNativeLayoutType(const DataLayoutType& type);
ASSERT_EQ(GetNativeLayoutType(DataLayoutType::kNCHW),
framework::DataLayout::kNCHW);
ASSERT_DEATH(GetNativeLayoutType(DataLayoutType::kNHWC), "");
}
void test_tensor_copy(const platform::DeviceContext& ctx) {
// Create LoDTensor.
std::vector<float> vector({1, 2, 3, 4});
framework::LoDTensor lod_tensor;
framework::TensorFromVector(vector, &lod_tensor);
framework::LoD lod({{0, 2, 4}});
lod_tensor.Resize({4, 1});
lod_tensor.set_lod(lod);
// Create lite::Tensor and copy.
paddle::lite::Tensor lite_tensor;
TensorCopyAsync(&lite_tensor, lod_tensor, ctx);
// Copy to LoDTensor.
framework::LoDTensor lod_tensor_n;
TensorCopyAsync(&lod_tensor_n, lite_tensor, ctx);
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(ctx.GetPlace())) {
platform::GpuStreamSync(
static_cast<const platform::CUDADeviceContext&>(ctx).stream());
}
#endif
std::vector<float> result;
TensorToVector(lod_tensor_n, &result);
ASSERT_EQ(result, vector);
ASSERT_EQ(lod_tensor_n.lod(), lod_tensor.lod());
}
TEST(LiteEngineOp, TensorCopyAsync) {
auto* ctx_cpu =
platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
test_tensor_copy(*ctx_cpu);
#ifdef PADDLE_WITH_CUDA
auto* ctx_gpu =
platform::DeviceContextPool::Instance().Get(platform::CUDAPlace(0));
test_tensor_copy(*ctx_gpu);
#endif
}
} // namespace utils
} // namespace lite
} // namespace inference
} // namespace paddle