You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
155 lines
5.7 KiB
155 lines
5.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
|
|
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
|
|
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename DeviceContext, typename T>
|
|
void default_elementwise_sub(const framework::ExecutionContext& ctx,
|
|
const framework::Tensor* x,
|
|
const framework::Tensor* y, framework::Tensor* z) {
|
|
int axis = ctx.Attr<int>("axis");
|
|
auto x_dims = x->dims();
|
|
auto y_dims = y->dims();
|
|
if (x_dims.size() >= y_dims.size()) {
|
|
ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
|
|
SubFunctor<T>(), z);
|
|
} else {
|
|
ElementwiseComputeEx<InverseSubFunctor<T>, DeviceContext, T>(
|
|
ctx, x, y, axis, InverseSubFunctor<T>(), z);
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T, class Enable = void>
|
|
struct SameDimsElemwiseSub {
|
|
void operator()(const framework::ExecutionContext& ctx,
|
|
const framework::Tensor* x, const framework::Tensor* y,
|
|
framework::Tensor* z);
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class ElementwiseSubKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* x = ctx.Input<framework::LoDTensor>("X");
|
|
auto* y = ctx.Input<framework::LoDTensor>("Y");
|
|
auto* z = ctx.Output<framework::LoDTensor>("Out");
|
|
z->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto dims_equal = x->dims() == y->dims();
|
|
if (dims_equal) {
|
|
SameDimsElemwiseSub<DeviceContext, T> same_dims_sub;
|
|
same_dims_sub(ctx, x, y, z);
|
|
} else {
|
|
default_elementwise_sub<DeviceContext, T>(ctx, x, y, z);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct SubGradDX {
|
|
HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
|
|
};
|
|
|
|
template <typename T>
|
|
struct SubGradDY {
|
|
HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return -dout; }
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
typename std::enable_if<
|
|
std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
|
|
elementwise_sub_grad(const framework::ExecutionContext& ctx,
|
|
const framework::Tensor* x, const framework::Tensor* y,
|
|
const framework::Tensor* out,
|
|
const framework::Tensor* dout, framework::Tensor* dx,
|
|
framework::Tensor* dy) {
|
|
int axis = ctx.Attr<int>("axis");
|
|
ElemwiseExplicitGradCompute<DeviceContext, T, SubGradDX<T>, SubGradDY<T>>(
|
|
ctx, *x, *y, *out, *dout, axis, dx, dy, SubGradDX<T>(), SubGradDY<T>());
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
// cuda definition
|
|
template <typename DeviceContext, typename T>
|
|
typename std::enable_if<
|
|
std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
|
|
elementwise_sub_grad(const framework::ExecutionContext& ctx,
|
|
const framework::Tensor* x, const framework::Tensor* y,
|
|
const framework::Tensor* out,
|
|
const framework::Tensor* dout, framework::Tensor* dx,
|
|
framework::Tensor* dy);
|
|
#endif
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class ElementwiseSubGradKernel : public ElemwiseGradKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
ElemwiseGradKernel<T>::Compute(ctx);
|
|
using Tensor = framework::Tensor;
|
|
|
|
auto* x = ctx.Input<Tensor>("X");
|
|
auto* y = ctx.Input<Tensor>("Y");
|
|
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
|
|
int axis = ctx.Attr<int>("axis");
|
|
// skip out
|
|
auto* out = dout;
|
|
if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
|
|
elementwise_sub_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
|
|
} else {
|
|
ElemwiseExplicitGradCompute<DeviceContext, T, SubGradDX<T>, SubGradDY<T>>(
|
|
ctx, *x, *y, *out, *dout, axis, dx, dy, SubGradDX<T>(),
|
|
SubGradDY<T>());
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class ElementwiseSubDoubleGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
using Tensor = framework::Tensor;
|
|
|
|
auto* y = ctx.Input<Tensor>("Y");
|
|
auto* dout = ctx.Input<Tensor>("DOut");
|
|
auto* ddx = ctx.Input<Tensor>("DDX");
|
|
auto* ddy = ctx.Input<Tensor>("DDY");
|
|
|
|
auto* ddout = ctx.Output<Tensor>("DDOut");
|
|
|
|
// DDOut = ddx - ddy
|
|
if (ddout) {
|
|
Tensor ddx_safe, ddy_safe;
|
|
GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
|
|
GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);
|
|
|
|
ddout->mutable_data<T>(ctx.GetPlace());
|
|
int axis = ctx.Attr<int>("axis");
|
|
ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
|
|
ctx, &ddx_safe, &ddy_safe, axis, SubFunctor<T>(), ddout);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|