You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
985 lines
42 KiB
985 lines
42 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <unordered_map>
|
|
#include "paddle/fluid/framework/data_layout_transform.h"
|
|
#include "paddle/fluid/memory/malloc.h"
|
|
#include "paddle/fluid/operators/conv_op.h"
|
|
#include "paddle/fluid/platform/mkldnn_reuse.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::DataLayout;
|
|
using mkldnn::memory;
|
|
using mkldnn::primitive;
|
|
using mkldnn::reorder;
|
|
using mkldnn::stream;
|
|
using platform::to_void_cast;
|
|
using platform::GetMKLDNNFormat;
|
|
|
|
inline void GetWeightsTz(std::vector<int64_t>& weights_tz, // NOLINT
|
|
int groups, bool is_conv3d) {
|
|
if (groups > 1) {
|
|
if (is_conv3d) {
|
|
int output = weights_tz[0];
|
|
int input = weights_tz[1];
|
|
int dimension = weights_tz[2];
|
|
int height = weights_tz[3];
|
|
int width = weights_tz[4];
|
|
weights_tz.resize(6);
|
|
weights_tz[0] = groups;
|
|
weights_tz[1] = output / groups;
|
|
weights_tz[2] = input;
|
|
weights_tz[3] = dimension;
|
|
weights_tz[4] = height;
|
|
weights_tz[5] = width;
|
|
} else {
|
|
int output = weights_tz[0];
|
|
int input = weights_tz[1];
|
|
int height = weights_tz[2];
|
|
int width = weights_tz[3];
|
|
weights_tz.resize(5);
|
|
weights_tz[0] = groups;
|
|
weights_tz[1] = output / groups;
|
|
weights_tz[2] = input;
|
|
weights_tz[3] = height;
|
|
weights_tz[4] = width;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline MKLDNNMemoryFormat GetWeightsFormat(MKLDNNMemoryFormat format,
|
|
int groups, bool is_conv3d) {
|
|
if (is_conv3d) {
|
|
return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
|
|
} else {
|
|
return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
|
|
}
|
|
}
|
|
|
|
static mkldnn::memory::data_type GetDstType(bool is_int8,
|
|
bool force_fp32_output,
|
|
std::string fuse_activation,
|
|
bool fuse_residual_conn,
|
|
const Tensor* residual_param) {
|
|
auto dst_dt = mkldnn::memory::data_type::f32; // uint8_t, int8_t, float
|
|
if (is_int8) {
|
|
dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
|
|
? mkldnn::memory::data_type::u8
|
|
: mkldnn::memory::data_type::s8;
|
|
if (force_fp32_output) {
|
|
dst_dt = mkldnn::memory::data_type::f32;
|
|
}
|
|
if (fuse_residual_conn && residual_param) {
|
|
auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
|
|
if (dst_dt != residual_dt) dst_dt = residual_dt;
|
|
}
|
|
}
|
|
return dst_dt;
|
|
}
|
|
|
|
template <typename T, typename K>
|
|
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
bool is_INT8 =
|
|
std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
|
|
if (!is_INT8) {
|
|
ComputeFP32(ctx);
|
|
} else {
|
|
std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
|
|
bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
|
|
bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
|
|
auto residual_param = ctx.Input<Tensor>("ResidualData");
|
|
auto dst_dt = GetDstType(true, force_fp32_output, fuse_activation,
|
|
fuse_residual_conn, residual_param);
|
|
if (dst_dt == mkldnn::memory::data_type::f32) {
|
|
ComputeINT8<float>(ctx);
|
|
} else if (dst_dt == mkldnn::memory::data_type::u8) {
|
|
ComputeINT8<uint8_t>(ctx);
|
|
} else if (dst_dt == mkldnn::memory::data_type::s8) {
|
|
ComputeINT8<int8_t>(ctx);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
|
|
const bool is_test = ctx.Attr<bool>("is_test");
|
|
|
|
auto& dev_ctx =
|
|
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
auto* input = ctx.Input<Tensor>("Input");
|
|
auto* filter = ctx.Input<Tensor>("Filter");
|
|
auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
|
|
auto* output = ctx.Output<Tensor>("Output");
|
|
|
|
PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
|
|
"Wrong layout set for Input tensor");
|
|
PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
|
|
"Wrong format set for Input tensor");
|
|
|
|
PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
|
|
"Wrong layout set for Filter tensor");
|
|
PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
|
|
"Wrong format set for Filter tensor");
|
|
|
|
PADDLE_ENFORCE_GE(
|
|
input->dims().size(), 4,
|
|
"Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
|
|
PADDLE_ENFORCE_LE(
|
|
input->dims().size(), 5,
|
|
"Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
|
|
|
|
PADDLE_ENFORCE_GE(
|
|
filter->dims().size(), 4,
|
|
"Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
|
|
PADDLE_ENFORCE_LE(
|
|
filter->dims().size(), 5,
|
|
"Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
|
|
|
|
if (bias) {
|
|
PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
|
|
"Wrong layout set for Bias tensor");
|
|
PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
|
|
"Wrong format set for Bias tensor");
|
|
|
|
PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
|
|
"Bias must only have 1 dimension, i.e. X");
|
|
}
|
|
|
|
std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
|
|
std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
|
|
|
|
std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
|
|
std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
|
|
|
|
std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
|
|
std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));
|
|
|
|
std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
|
|
float fuse_alpha = ctx.Attr<float>("fuse_alpha");
|
|
float fuse_beta = ctx.Attr<float>("fuse_beta");
|
|
bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
|
|
int groups = ctx.Attr<int>("groups");
|
|
std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
|
|
bool is_conv3d = strides.size() == 3U;
|
|
|
|
auto input_dims = input->dims();
|
|
auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
|
|
auto filter_dims = filter->dims();
|
|
auto filter_data_dims =
|
|
framework::slice_ddim(filter_dims, 2, filter_dims.size());
|
|
|
|
auto ksize = framework::vectorize(filter_data_dims);
|
|
|
|
UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
|
|
data_dims, strides, ksize);
|
|
|
|
std::vector<primitive> pipeline;
|
|
|
|
PADDLE_ENFORCE(
|
|
is_conv3d
|
|
? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
|
|
dilations[2] == 1
|
|
: dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
|
|
"dilation in convolution is not implemented yet");
|
|
|
|
const T* input_data = input->data<T>();
|
|
const T* filter_data = filter->data<T>();
|
|
|
|
auto src_tz = paddle::framework::vectorize(input->dims());
|
|
auto weights_tz = paddle::framework::vectorize(filter->dims());
|
|
int g = std::max(groups, 1);
|
|
|
|
GetWeightsTz(weights_tz, g, is_conv3d);
|
|
|
|
auto dst_tz = paddle::framework::vectorize(output->dims());
|
|
|
|
// Get unique name for storing MKLDNN primitives
|
|
const std::string key = platform::CreateKey(
|
|
src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
|
|
|
|
auto src_format = input->format();
|
|
MKLDNNMemoryFormat weights_format =
|
|
GetWeightsFormat(filter->format(), g, is_conv3d);
|
|
|
|
auto user_src_md = platform::MKLDNNMemDesc(
|
|
{src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
|
|
auto user_weights_md = platform::MKLDNNMemDesc(
|
|
{weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
|
|
|
|
/* create memory descriptor for convolution without specified format
|
|
* ('any') which lets a primitive (convolution in this case) choose
|
|
* the memory format preferred for best performance
|
|
*/
|
|
// TODO(jczaja): This is workaround to make grad op UT's numerical
|
|
// gradient computation proper as this op is called directly without
|
|
// fetch op following it , so numercial grad is computed (in python)
|
|
// using block formats which will give wrong results
|
|
std::string data_format = ctx.Attr<std::string>("data_format");
|
|
auto chosen_memory_format =
|
|
is_test ? MKLDNNMemoryFormat::any
|
|
: platform::data_format_to_memory_format(data_format);
|
|
|
|
weights_format = MKLDNNMemoryFormat::any;
|
|
// Check the format for user's special output
|
|
if (chosen_memory_format != MKLDNNMemoryFormat::any) {
|
|
if (is_conv3d) {
|
|
chosen_memory_format =
|
|
platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
|
|
}
|
|
}
|
|
|
|
auto src_md = platform::MKLDNNMemDesc(
|
|
src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
auto weights_md = platform::MKLDNNMemDesc(
|
|
weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
|
|
std::vector<int64_t> bias_tz;
|
|
auto dst_md = platform::MKLDNNMemDesc(
|
|
dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
|
|
platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);
|
|
|
|
// create a conv primitive descriptor and save it for usage in backward
|
|
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
|
|
auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
|
|
: mkldnn::prop_kind::forward_training;
|
|
if (bias) {
|
|
bias_tz = paddle::framework::vectorize(bias->dims());
|
|
auto bias_md = platform::MKLDNNMemDesc(
|
|
bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
|
|
conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
|
|
src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
|
|
fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
|
|
fwd_prop_kind);
|
|
} else {
|
|
conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
|
|
src_md, weights_md, boost::none, dst_md, strides, paddings,
|
|
mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
|
|
fuse_residual_conn, fwd_prop_kind);
|
|
}
|
|
|
|
// create mkldnn memory from input tensors (data/weights)
|
|
auto user_src_memory_p =
|
|
handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
|
|
auto user_weights_memory_p = handler.AcquireWeightsMemory(
|
|
user_weights_md, to_void_cast<T>(filter_data));
|
|
|
|
// create reorder primitive if the input format is not the preferred one
|
|
auto src_memory_p =
|
|
handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
|
|
auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
|
|
user_weights_memory_p, pipeline, is_test);
|
|
|
|
std::shared_ptr<mkldnn::memory> dst_memory_p, user_residual_memory_p;
|
|
|
|
if (fuse_residual_conn) {
|
|
auto residual_param = ctx.Input<Tensor>("ResidualData");
|
|
auto residual_param_data = residual_param->data<T>();
|
|
|
|
PADDLE_ENFORCE_NE(
|
|
residual_param_data, nullptr,
|
|
"Provide data if you want MKLDNN conv+elementwise_add fusion");
|
|
PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
|
|
"Output and elementwise parameter need to have the "
|
|
"same dimension sizes");
|
|
|
|
if (residual_param->format() != handler.GetDstFormat()) {
|
|
auto output_data =
|
|
output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
|
|
auto residual_data_tz =
|
|
paddle::framework::vectorize(residual_param->dims());
|
|
auto residual_data_type =
|
|
paddle::framework::ToMKLDNNDataType(residual_param->type());
|
|
|
|
auto user_residual_md = platform::MKLDNNMemDesc(
|
|
residual_data_tz, residual_data_type, residual_param->format());
|
|
user_residual_memory_p = handler.AcquireResidualDataMemory(
|
|
user_residual_md, to_void_cast<T>(residual_param_data));
|
|
|
|
dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
|
|
user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
|
|
} else {
|
|
// Changing ShareDataWith to TensorCopy results in performance drop
|
|
// on ResNet architectures
|
|
// (https://github.com/PaddlePaddle/Paddle/issues/22964)
|
|
output->ShareDataWith(*residual_param);
|
|
auto output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
dst_memory_p =
|
|
handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
|
|
}
|
|
} else {
|
|
auto output_data =
|
|
output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
|
|
dst_memory_p =
|
|
handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
|
|
}
|
|
|
|
auto conv_p = handler.AcquireConvolution();
|
|
|
|
mkldnn::stream astream(mkldnn_engine);
|
|
if (bias) {
|
|
const T* bias_data = bias->data<T>();
|
|
auto user_bias_md = platform::MKLDNNMemDesc(
|
|
{bias_tz}, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
|
|
auto user_bias_memory_p =
|
|
handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));
|
|
|
|
auto bias_memory_p =
|
|
handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
|
|
|
|
conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
|
|
{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
|
|
{MKLDNN_ARG_BIAS, *bias_memory_p},
|
|
{MKLDNN_ARG_DST, *dst_memory_p}});
|
|
|
|
} else {
|
|
conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
|
|
{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
|
|
{MKLDNN_ARG_DST, *dst_memory_p}});
|
|
}
|
|
astream.wait();
|
|
|
|
output->set_layout(DataLayout::kMKLDNN);
|
|
output->set_format(GetMKLDNNFormat(*dst_memory_p));
|
|
}
|
|
template <typename T_out>
|
|
void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
|
|
const bool is_test = ctx.Attr<bool>("is_test");
|
|
|
|
auto& dev_ctx =
|
|
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
auto* input = ctx.Input<Tensor>("Input");
|
|
auto* output = ctx.Output<Tensor>("Output");
|
|
|
|
PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
|
|
"Wrong layout set for Input tensor");
|
|
PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
|
|
"Wrong format set for Input tensor");
|
|
|
|
PADDLE_ENFORCE_GE(
|
|
input->dims().size(), 4,
|
|
"Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
|
|
PADDLE_ENFORCE_LE(
|
|
input->dims().size(), 5,
|
|
"Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
|
|
|
|
std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
|
|
bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
|
|
bool unsigned_output =
|
|
(fuse_activation == "relu" || fuse_activation == "relu6");
|
|
|
|
const T* input_data = input->data<T>();
|
|
|
|
auto src_tz = paddle::framework::vectorize(input->dims());
|
|
|
|
mkldnn::memory::data_type src_dt =
|
|
paddle::framework::ToMKLDNNDataType(input->type());
|
|
|
|
std::string key = platform::CreateKey(
|
|
src_tz, src_dt, ctx.InputName("Input") + ctx.InputName("Filter"));
|
|
|
|
const std::string key_conv_pd = key + "@conv_pd";
|
|
bool need_s8_to_u8 = false;
|
|
std::shared_ptr<mkldnn::convolution_forward> conv_p;
|
|
std::shared_ptr<mkldnn::memory> src_memory_p;
|
|
std::shared_ptr<mkldnn::memory> user_src_memory_p;
|
|
std::shared_ptr<mkldnn::memory> dst_memory_p;
|
|
std::vector<primitive> pipeline;
|
|
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
|
|
std::shared_ptr<platform::ConvMKLDNNHandler> handler;
|
|
|
|
// This is workaround for hacky implementation
|
|
// of conv int8 mkl-dnn. Once conv fp32 and conv int8
|
|
// are merged/unified, this will disappear
|
|
std::string key_tid = "";
|
|
if (platform::get_cur_mkldnn_session_id() ==
|
|
platform::kMKLDNNSessionID_Default) {
|
|
key_tid = "-t:" + platform::ThreadIDasStr();
|
|
}
|
|
|
|
auto prim_key = key + key_tid + "@conv_p";
|
|
auto dst_key = key + key_tid + "@dst_mem_p";
|
|
auto src_key = key + key_tid + "@src_mem_p";
|
|
auto weights_key = key + key_tid + "@weights_mem_p";
|
|
auto bias_key = key + key_tid + "@bias_mem_p";
|
|
auto user_src_key = key + key_tid + "@user_src_mem_p";
|
|
auto user_residual_key = key + key_tid + "@user_residual_data_mem_p";
|
|
auto src_reorder_key = key + key_tid + "@src_mem_preorder_p";
|
|
auto residual_reorder_key = key + key_tid + "@residual_data_mem_preorder_p";
|
|
|
|
conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
|
|
dev_ctx.GetBlob(prim_key));
|
|
|
|
mkldnn::stream astream(mkldnn_engine);
|
|
|
|
if (conv_p == nullptr || !is_test) {
|
|
float fuse_alpha = ctx.Attr<float>("fuse_alpha");
|
|
float fuse_beta = ctx.Attr<float>("fuse_beta");
|
|
bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
|
|
|
|
auto* filter = ctx.Input<Tensor>("Filter");
|
|
|
|
PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
|
|
"Wrong layout set for Filter tensor");
|
|
PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
|
|
"Wrong format set for Filter tensor");
|
|
|
|
PADDLE_ENFORCE_GE(
|
|
filter->dims().size(), 4,
|
|
"Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
|
|
PADDLE_ENFORCE_LE(
|
|
filter->dims().size(), 5,
|
|
"Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
!fuse_residual_conn || !force_fp32_output, true,
|
|
"residual fusion does not support force output with fp32");
|
|
|
|
auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
|
|
|
|
if (bias) {
|
|
PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
|
|
"Wrong layout set for Bias tensor");
|
|
PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
|
|
"Wrong format set for Bias tensor");
|
|
|
|
PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
|
|
"Bias must only have 1 dimension, i.e. X");
|
|
}
|
|
|
|
std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
|
|
std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
|
|
|
|
std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
|
|
std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
|
|
|
|
std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
|
|
std::vector<int64_t> dilations(begin(dilations_temp),
|
|
end(dilations_temp));
|
|
|
|
std::string padding_algorithm =
|
|
ctx.Attr<std::string>("padding_algorithm");
|
|
|
|
bool is_conv3d = strides.size() == 3U;
|
|
|
|
PADDLE_ENFORCE_NE(is_conv3d, true,
|
|
"int8 does not support conv3d currently");
|
|
|
|
auto input_dims = input->dims();
|
|
auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
|
|
auto filter_dims = filter->dims();
|
|
auto filter_data_dims =
|
|
framework::slice_ddim(filter_dims, 2, filter_dims.size());
|
|
|
|
auto ksize = framework::vectorize(filter_data_dims);
|
|
|
|
UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
|
|
data_dims, strides, ksize);
|
|
|
|
int groups = ctx.Attr<int>("groups");
|
|
auto weights_tz = paddle::framework::vectorize(filter->dims());
|
|
int g = std::max(groups, 1);
|
|
|
|
GetWeightsTz(weights_tz, g, is_conv3d);
|
|
auto dst_tz = paddle::framework::vectorize(output->dims());
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
is_conv3d
|
|
? dilations.size() == 3 && dilations[0] == 1 &&
|
|
dilations[1] == 1 && dilations[2] == 1
|
|
: dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
|
|
true, "dilation in convolution is not implemented yet");
|
|
|
|
const K* filter_data = filter->data<K>();
|
|
auto scale_in_data = ctx.Attr<float>("Scale_in");
|
|
auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
|
|
auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
|
|
auto scale_out_data =
|
|
force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
|
|
float sum_scale =
|
|
fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
|
|
|
|
bool is_multi_channel = scale_weights_data.size() > 1;
|
|
|
|
int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
|
|
: (weights_tz)[0])
|
|
: 1;
|
|
std::vector<float> output_shift_scale(count);
|
|
#pragma omp parallel for if (count > 1)
|
|
for (int i = 0; i < count; i++) {
|
|
if (scale_weights_data[i] == 0.0)
|
|
output_shift_scale[i] =
|
|
scale_out_data; // weights data will contain 0
|
|
// in some models, then weights
|
|
// scale couldn't be calculated
|
|
else
|
|
output_shift_scale[i] =
|
|
static_cast<float>(static_cast<double>(scale_out_data) /
|
|
(static_cast<double>(scale_in_data) *
|
|
static_cast<double>(scale_weights_data[i])));
|
|
}
|
|
|
|
auto user_src_md =
|
|
platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
|
|
auto user_weights_md = platform::MKLDNNMemDesc(
|
|
{weights_tz}, platform::MKLDNNGetDataType<K>(),
|
|
((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);
|
|
|
|
/* create memory descriptor for convolution without specified format
|
|
* ('any') which lets a primitive (convolution in this case) choose
|
|
* the memory format preferred for best performance
|
|
*/
|
|
auto chosen_memory_format = MKLDNNMemoryFormat::any;
|
|
|
|
std::vector<int64_t> bias_tz;
|
|
|
|
auto src_md =
|
|
platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
|
|
auto weights_md = platform::MKLDNNMemDesc(
|
|
weights_tz, memory::data_type::s8, chosen_memory_format);
|
|
auto dst_md = platform::MKLDNNMemDesc(
|
|
dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
|
|
|
|
handler.reset(
|
|
new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
|
|
// create a conv primitive descriptor and save it for usage in backward
|
|
auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
|
|
: mkldnn::prop_kind::forward_training;
|
|
|
|
if (bias) {
|
|
bias_tz = paddle::framework::vectorize(bias->dims());
|
|
auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
|
|
MKLDNNMemoryFormat::x);
|
|
conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
|
|
src_md, weights_md, bias_md, dst_md, strides, paddings,
|
|
mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
|
|
fuse_residual_conn, propagation, output_shift_scale, sum_scale);
|
|
} else {
|
|
conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
|
|
src_md, weights_md, boost::none, dst_md, strides, paddings,
|
|
mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
|
|
fuse_residual_conn, propagation, output_shift_scale, sum_scale);
|
|
}
|
|
|
|
// create mkldnn memory from input tensors (data/weights)
|
|
user_src_memory_p =
|
|
handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
|
|
auto user_weights_memory_p = handler->AcquireWeightsMemory(
|
|
user_weights_md, to_void_cast<K>(filter_data));
|
|
|
|
// create reorder primitive if the input format is not the preferred one
|
|
src_memory_p =
|
|
handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
|
|
|
|
std::shared_ptr<mkldnn::memory> weights_memory_p;
|
|
int mask_reorder =
|
|
is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
|
|
weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
|
|
user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
|
|
mask_reorder);
|
|
|
|
if (fuse_residual_conn) {
|
|
auto residual_param = ctx.Input<Tensor>("ResidualData");
|
|
PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
|
|
"Output and elementwise parameter need to have the "
|
|
"same dimension sizes");
|
|
auto residual_dt =
|
|
paddle::framework::ToMKLDNNDataType(residual_param->type());
|
|
if (residual_param->format() != handler->GetDstFormat()) {
|
|
auto residual_data_tz =
|
|
paddle::framework::vectorize(residual_param->dims());
|
|
auto user_residual_md = platform::MKLDNNMemDesc(
|
|
residual_data_tz, residual_dt, residual_param->format());
|
|
dst_memory_p = platform::SetDstMemory<T_out>(
|
|
ctx, output, residual_param, user_residual_md, handler,
|
|
&pipeline);
|
|
} else {
|
|
output->ShareDataWith(*residual_param);
|
|
dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
|
|
}
|
|
need_s8_to_u8 =
|
|
(platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
|
|
unsigned_output;
|
|
} else {
|
|
dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
|
|
}
|
|
|
|
// create convolution op primitive
|
|
auto scale_bias_key = key + "@scale_bias";
|
|
conv_p = handler->AcquireConvolution();
|
|
if (bias) {
|
|
const K* bias_data = bias->data<K>();
|
|
auto user_bias_md = platform::MKLDNNMemDesc(
|
|
{bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
|
|
auto user_bias_memory_p = handler->AcquireBiasMemory(
|
|
user_bias_md, to_void_cast<K>(bias_data));
|
|
std::shared_ptr<mkldnn::memory> bias_memory_p;
|
|
int mask_reorder = is_multi_channel ? 1 << 0 : 1;
|
|
int count =
|
|
is_multi_channel
|
|
? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
|
|
: 1;
|
|
std::vector<float> scale_bias_data(count);
|
|
#pragma omp parallel for if (count > 1)
|
|
for (int i = 0; i < count; i++) {
|
|
scale_bias_data[i] = scale_in_data * scale_weights_data[i];
|
|
}
|
|
bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
|
|
user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
|
|
mask_reorder);
|
|
conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
|
|
{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
|
|
{MKLDNN_ARG_BIAS, *bias_memory_p},
|
|
{MKLDNN_ARG_DST, *dst_memory_p}});
|
|
} else {
|
|
conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
|
|
{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
|
|
{MKLDNN_ARG_DST, *dst_memory_p}});
|
|
}
|
|
} else {
|
|
auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
|
|
dev_ctx.GetBlob(src_reorder_key));
|
|
src_memory_p =
|
|
std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
|
|
if (src_memory_reorder_p) {
|
|
user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
|
|
dev_ctx.GetBlob(user_src_key));
|
|
user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
|
|
src_memory_reorder_p->execute(astream, *user_src_memory_p,
|
|
*src_memory_p);
|
|
astream.wait();
|
|
} else if (src_memory_p) {
|
|
src_memory_p->set_data_handle(to_void_cast<T>(input_data));
|
|
}
|
|
auto weights_memory_p = std::static_pointer_cast<mkldnn::memory>(
|
|
dev_ctx.GetBlob(weights_key));
|
|
dst_memory_p =
|
|
std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
|
|
conv_pd =
|
|
std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
|
|
dev_ctx.GetBlob(key_conv_pd));
|
|
if (conv_pd) {
|
|
handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
|
|
mkldnn_engine, key));
|
|
}
|
|
|
|
if (fuse_residual_conn) {
|
|
auto residual_param = ctx.Input<Tensor>("ResidualData");
|
|
output->ShareDataWith(*residual_param);
|
|
need_s8_to_u8 =
|
|
(platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
|
|
unsigned_output;
|
|
}
|
|
platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
|
|
|
|
auto residual_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
|
|
dev_ctx.GetBlob(residual_reorder_key));
|
|
if (residual_reorder_p) {
|
|
auto user_residual_data_p = std::static_pointer_cast<mkldnn::memory>(
|
|
dev_ctx.GetBlob(user_residual_key));
|
|
residual_reorder_p->execute(astream, *user_residual_data_p,
|
|
*dst_memory_p);
|
|
astream.wait();
|
|
}
|
|
|
|
auto bias_memory_p =
|
|
std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(bias_key));
|
|
|
|
if (bias_memory_p) {
|
|
conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
|
|
{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
|
|
{MKLDNN_ARG_BIAS, *bias_memory_p},
|
|
{MKLDNN_ARG_DST, *dst_memory_p}});
|
|
} else {
|
|
conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
|
|
{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
|
|
{MKLDNN_ARG_DST, *dst_memory_p}});
|
|
}
|
|
}
|
|
astream.wait();
|
|
if (need_s8_to_u8) {
|
|
output->mutable_data<uint8_t>(ctx.GetPlace());
|
|
}
|
|
output->set_layout(DataLayout::kMKLDNN);
|
|
output->set_format(GetMKLDNNFormat(*dst_memory_p));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
|
|
auto& dev_ctx =
|
|
ctx.template device_context<platform::MKLDNNDeviceContext>();
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
const Tensor* input = ctx.Input<Tensor>("Input");
|
|
const Tensor* filter = ctx.Input<Tensor>("Filter");
|
|
const Tensor* output_grad =
|
|
ctx.Input<Tensor>(framework::GradVarName("Output"));
|
|
Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
|
|
Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
|
|
|
|
PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
|
|
"Wrong layout set for Input tensor");
|
|
PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
|
|
"Wrong format set for Input tensor");
|
|
|
|
PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
|
|
"Wrong layout set for Filter tensor");
|
|
PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
|
|
"Wrong format set for Filter tensor");
|
|
|
|
PADDLE_ENFORCE_EQ(output_grad->layout(), DataLayout::kMKLDNN,
|
|
"Wrong layout set for output_grad tensor");
|
|
PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::undef,
|
|
"Wrong format set for output_grad tensor");
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx.Attr<bool>("is_test"), false,
|
|
"is_test attribute should be set to False in training phase.");
|
|
|
|
if (!input_grad && !filter_grad) return;
|
|
|
|
std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
|
|
std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
|
|
|
|
std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
|
|
std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
|
|
|
|
std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
|
|
std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));
|
|
|
|
std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
|
|
|
|
int groups = ctx.Attr<int>("groups");
|
|
|
|
bool is_conv3d = strides.size() == 3U;
|
|
const T* input_data = input->data<T>();
|
|
const T* filter_data = filter->data<T>();
|
|
const T* output_grad_data = output_grad->data<T>();
|
|
T* input_grad_data = nullptr;
|
|
T* filter_grad_data = nullptr;
|
|
|
|
auto input_dims = input->dims();
|
|
auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
|
|
auto filter_dims = filter->dims();
|
|
auto filter_data_dims =
|
|
framework::slice_ddim(filter_dims, 2, filter_dims.size());
|
|
|
|
auto ksize = framework::vectorize(filter_data_dims);
|
|
|
|
UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
|
|
data_dims, strides, ksize);
|
|
|
|
auto src_tz = paddle::framework::vectorize(input->dims());
|
|
auto weights_tz = paddle::framework::vectorize(filter->dims());
|
|
|
|
int g = std::max(groups, 1);
|
|
GetWeightsTz(weights_tz, g, is_conv3d);
|
|
auto dst_tz = paddle::framework::vectorize(output_grad->dims());
|
|
|
|
auto src_format = input->format();
|
|
MKLDNNMemoryFormat weights_format =
|
|
GetWeightsFormat(filter->format(), g, is_conv3d);
|
|
|
|
// Get an unique name from "argument" name of "input" and "Filter" variable
|
|
// as well as attributes of primitive to be created
|
|
// This name will be used as key when saving info into device context
|
|
const std::string key = platform::CreateKey(
|
|
src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
|
|
|
|
const std::string key_conv_pd = key + "@conv_pd";
|
|
std::vector<primitive> pipeline;
|
|
|
|
// Create user memory descriptors
|
|
auto user_src_md = platform::MKLDNNMemDesc(
|
|
{src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
|
|
auto user_weights_md = platform::MKLDNNMemDesc(
|
|
{weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
|
|
auto user_diff_dst_md = platform::MKLDNNMemDesc(
|
|
{dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
|
|
|
|
/* create memory descriptor for conv backward without specified format
|
|
* ('any') which lets a primitive (conv backward in this case) choose
|
|
* the memory format preferred for best performance
|
|
*/
|
|
|
|
// TODO(jczaja): Once GRAD NHWC is working then format 'any'
|
|
// should be used exclusively. But till forward pass enforce
|
|
// NCHW for training we need to have NCHW here as well
|
|
// to avoid performance degradation in relu_grad and pool2d_grad
|
|
std::string data_format = ctx.Attr<std::string>("data_format");
|
|
auto chosen_memory_format =
|
|
platform::data_format_to_memory_format(data_format);
|
|
|
|
weights_format = MKLDNNMemoryFormat::any;
|
|
// Check the format for user's special output
|
|
if (chosen_memory_format != MKLDNNMemoryFormat::any) {
|
|
if (is_conv3d) {
|
|
chosen_memory_format =
|
|
platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
|
|
}
|
|
}
|
|
|
|
auto src_md = platform::MKLDNNMemDesc(
|
|
src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
auto diff_src_md = platform::MKLDNNMemDesc(
|
|
src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
auto weights_md = platform::MKLDNNMemDesc(
|
|
weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
|
|
auto diff_weights_md = platform::MKLDNNMemDesc(
|
|
weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
|
|
auto diff_dst_md = platform::MKLDNNMemDesc(
|
|
dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
// Retrieve conv_pd from device context
|
|
auto conv_pd =
|
|
std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
|
|
dev_ctx.GetBlob(key_conv_pd));
|
|
PADDLE_ENFORCE_NE(conv_pd, nullptr,
|
|
"Fail to find conv_pd in device context");
|
|
|
|
auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
|
|
|
|
// create backward convolution weights primitive descriptor
|
|
auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
|
|
mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
|
|
diff_dst_md, strides, mkldnn_paddings[0], mkldnn_paddings[1]);
|
|
|
|
auto conv_bwd_weights_pd =
|
|
std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
|
|
conv_bwd_weights_desc, mkldnn_engine, *conv_pd);
|
|
|
|
// create backward convolution data primitive descriptor
|
|
auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
|
|
mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
|
|
diff_dst_md, strides, mkldnn_paddings[0], mkldnn_paddings[1]);
|
|
|
|
auto conv_bwd_data_pd =
|
|
std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
|
|
conv_bwd_data_desc, mkldnn_engine, *conv_pd);
|
|
|
|
platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
|
|
conv_bwd_weights_pd, dev_ctx,
|
|
mkldnn_engine, key);
|
|
|
|
// create mkldnn memory from input tensors (data/weights)
|
|
auto user_src_memory_p =
|
|
handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
|
|
auto user_weights_memory_p = handler.AcquireWeightsMemory(
|
|
user_weights_md, to_void_cast<T>(filter_data));
|
|
auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
|
|
user_diff_dst_md, to_void_cast<T>(output_grad_data));
|
|
mkldnn::stream astream(mkldnn_engine);
|
|
if (filter_grad) {
|
|
auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
|
|
user_src_memory_p, pipeline);
|
|
|
|
auto diff_dst_memory_4filter_p =
|
|
handler.AcquireDiffDstMemoryFromWeightsPrimitive(
|
|
user_diff_dst_memory_p, pipeline);
|
|
|
|
const size_t size = handler.GetDiffWeightsMemorySize();
|
|
filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
|
|
|
|
auto diff_weights_memory_p =
|
|
handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
|
|
reinterpret_cast<void*>(filter_grad_data));
|
|
|
|
auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights();
|
|
|
|
// TODO(grygielski) why no bias_diff?
|
|
conv_bwd_weights_p->execute(
|
|
astream, {{MKLDNN_ARG_SRC, *src_memory_p},
|
|
{MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4filter_p},
|
|
{MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
|
|
astream.wait();
|
|
|
|
filter_grad->set_layout(DataLayout::kMKLDNN);
|
|
filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
|
|
}
|
|
if (input_grad) {
|
|
auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
|
|
user_weights_memory_p, pipeline);
|
|
|
|
auto diff_dst_memory_4data_p =
|
|
handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
|
|
pipeline);
|
|
|
|
const size_t size = handler.GetDiffSourceMemorySize();
|
|
input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
|
|
|
|
auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
|
|
reinterpret_cast<void*>(input_grad_data));
|
|
|
|
auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData();
|
|
|
|
conv_bwd_data_p->execute(astream,
|
|
{{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
|
|
{MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4data_p},
|
|
{MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
|
|
astream.wait();
|
|
|
|
input_grad->set_layout(DataLayout::kMKLDNN);
|
|
input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
|
|
::paddle::platform::CPUPlace, FP32,
|
|
ops::kConvMKLDNNFP32,
|
|
ops::ConvMKLDNNOpKernel<float, float>);
|
|
|
|
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
|
|
::paddle::platform::CPUPlace, U8,
|
|
ops::kConvMKLDNNINT8,
|
|
ops::ConvMKLDNNOpKernel<uint8_t, float>);
|
|
|
|
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
|
|
::paddle::platform::CPUPlace, S8,
|
|
ops::kConvMKLDNNINT8,
|
|
ops::ConvMKLDNNOpKernel<int8_t, float>);
|
|
|
|
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
|
|
::paddle::platform::CPUPlace, FP32,
|
|
ops::kConvMKLDNNFP32,
|
|
ops::ConvMKLDNNGradOpKernel<float>);
|
|
|
|
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
|
|
::paddle::platform::CPUPlace, FP32,
|
|
ops::kConvMKLDNNFP32,
|
|
ops::ConvMKLDNNOpKernel<float, float>);
|
|
|
|
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
|
|
::paddle::platform::CPUPlace, FP32,
|
|
ops::kConvMKLDNNFP32,
|
|
ops::ConvMKLDNNGradOpKernel<float>);
|