You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
159 lines
5.3 KiB
159 lines
5.3 KiB
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
|
|
def event_handler(event):
|
|
if isinstance(event, paddle.event.EndIteration):
|
|
if event.batch_id % 100 == 0:
|
|
print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id,
|
|
event.cost)
|
|
|
|
|
|
def conv_bn_layer(input,
|
|
ch_out,
|
|
filter_size,
|
|
stride,
|
|
padding,
|
|
active_type=paddle.activation.Relu(),
|
|
ch_in=None):
|
|
tmp = paddle.layer.img_conv(
|
|
input=input,
|
|
filter_size=filter_size,
|
|
num_channels=ch_in,
|
|
num_filters=ch_out,
|
|
stride=stride,
|
|
padding=padding,
|
|
act=paddle.activation.Linear(),
|
|
bias_attr=False)
|
|
return paddle.layer.batch_norm(input=tmp, act=active_type)
|
|
|
|
|
|
def shortcut(ipt, n_in, n_out, stride):
|
|
if n_in != n_out:
|
|
print("n_in != n_out")
|
|
return conv_bn_layer(ipt, n_out, 1, stride, 0,
|
|
paddle.activation.Linear())
|
|
else:
|
|
return ipt
|
|
|
|
|
|
def basicblock(ipt, ch_out, stride):
|
|
ch_in = ipt.num_filters
|
|
tmp = conv_bn_layer(ipt, ch_out, 3, stride, 1)
|
|
tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, paddle.activation.Linear())
|
|
short = shortcut(ipt, ch_in, ch_out, stride)
|
|
return paddle.layer.addto(input=[tmp, short], act=paddle.activation.Relu())
|
|
|
|
|
|
def bottleneck(ipt, ch_out, stride):
|
|
ch_in = ipt.num_filter
|
|
tmp = conv_bn_layer(ipt, ch_out, 1, stride, 0)
|
|
tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1)
|
|
tmp = conv_bn_layer(tmp, ch_out * 4, 1, 1, 0, paddle.activation.Linear())
|
|
short = shortcut(ipt, ch_in, ch_out * 4, stride)
|
|
return paddle.layer.addto(input=[tmp, short], act=paddle.activation.Relu())
|
|
|
|
|
|
def layer_warp(block_func, ipt, features, count, stride):
|
|
tmp = block_func(ipt, features, stride)
|
|
for i in range(1, count):
|
|
tmp = block_func(tmp, features, 1)
|
|
return tmp
|
|
|
|
|
|
def resnet_imagenet(ipt, depth=50):
|
|
cfg = {
|
|
18: ([2, 2, 2, 1], basicblock),
|
|
34: ([3, 4, 6, 3], basicblock),
|
|
50: ([3, 4, 6, 3], bottleneck),
|
|
101: ([3, 4, 23, 3], bottleneck),
|
|
152: ([3, 8, 36, 3], bottleneck)
|
|
}
|
|
stages, block_func = cfg[depth]
|
|
tmp = conv_bn_layer(
|
|
ipt, ch_in=3, ch_out=64, filter_size=7, stride=2, padding=3)
|
|
tmp = paddle.layer.img_pool(input=tmp, pool_size=3, stride=2)
|
|
tmp = layer_warp(block_func, tmp, 64, stages[0], 1)
|
|
tmp = layer_warp(block_func, tmp, 128, stages[1], 2)
|
|
tmp = layer_warp(block_func, tmp, 256, stages[2], 2)
|
|
tmp = layer_warp(block_func, tmp, 512, stages[3], 2)
|
|
tmp = paddle.layer.img_pool(
|
|
input=tmp, pool_size=7, stride=1, pool_type=paddle.pooling.Avg())
|
|
|
|
tmp = paddle.layer.fc(input=tmp, size=1000, act=paddle.activation.Softmax())
|
|
return tmp
|
|
|
|
|
|
def resnet_cifar10(ipt, depth=32):
|
|
# depth should be one of 20, 32, 44, 56, 110, 1202
|
|
assert (depth - 2) % 6 == 0
|
|
n = (depth - 2) / 6
|
|
nStages = {16, 64, 128}
|
|
conv1 = conv_bn_layer(
|
|
ipt, ch_in=3, ch_out=16, filter_size=3, stride=1, padding=1)
|
|
res1 = layer_warp(basicblock, conv1, 16, n, 1)
|
|
res2 = layer_warp(basicblock, res1, 32, n, 2)
|
|
res3 = layer_warp(basicblock, res2, 64, n, 2)
|
|
pool = paddle.layer.img_pool(
|
|
input=res3, pool_size=8, stride=1, pool_type=paddle.pooling.Avg())
|
|
return pool
|
|
|
|
|
|
def main():
|
|
datadim = 3 * 32 * 32
|
|
classdim = 10
|
|
|
|
paddle.init(use_gpu=False, trainer_count=1)
|
|
|
|
image = paddle.layer.data(
|
|
name="image", type=paddle.data_type.dense_vector(datadim))
|
|
net = resnet_cifar10(image, depth=32)
|
|
out = paddle.layer.fc(input=net,
|
|
size=classdim,
|
|
act=paddle.activation.Softmax())
|
|
|
|
lbl = paddle.layer.data(
|
|
name="label", type=paddle.data_type.integer_value(classdim))
|
|
cost = paddle.layer.classification_cost(input=out, label=lbl)
|
|
|
|
parameters = paddle.parameters.create(cost)
|
|
|
|
momentum_optimizer = paddle.optimizer.Momentum(
|
|
momentum=0.9,
|
|
regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
|
|
learning_rate=0.1 / 128.0,
|
|
learning_rate_decay_a=0.1,
|
|
learning_rate_decay_b=50000 * 100,
|
|
learning_rate_schedule='discexp',
|
|
batch_size=128)
|
|
|
|
trainer = paddle.trainer.SGD(update_equation=momentum_optimizer)
|
|
trainer.train(
|
|
reader=paddle.reader.batched(
|
|
paddle.reader.shuffle(
|
|
paddle.dataset.cifar.train10(), buf_size=3072),
|
|
batch_size=128),
|
|
cost=cost,
|
|
num_passes=1,
|
|
parameters=parameters,
|
|
event_handler=event_handler,
|
|
reader_dict={'image': 0,
|
|
'label': 1}, )
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|