You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
634 lines
21 KiB
634 lines
21 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
from . import control_flow
|
|
from . import tensor
|
|
from . import ops
|
|
from . import nn
|
|
import math
|
|
import numpy as np
|
|
import warnings
|
|
|
|
__all__ = ['Uniform', 'Normal', 'Categorical', 'MultivariateNormalDiag']
|
|
|
|
|
|
class Distribution(object):
|
|
"""
|
|
Distribution is the abstract base class for probability distributions.
|
|
"""
|
|
|
|
def sample(self):
|
|
"""Sampling from the distribution."""
|
|
raise NotImplementedError
|
|
|
|
def entropy(self):
|
|
"""The entropy of the distribution."""
|
|
raise NotImplementedError
|
|
|
|
def kl_divergence(self, other):
|
|
"""The KL-divergence between self distributions and other."""
|
|
raise NotImplementedError
|
|
|
|
def log_prob(self, value):
|
|
"""Log probability density/mass function."""
|
|
raise NotImplementedError
|
|
|
|
def _validate_args(self, *args):
|
|
"""
|
|
Argument validation for distribution args
|
|
Args:
|
|
value (float, list, numpy.ndarray, Variable)
|
|
Raises
|
|
ValueError: if one argument is Variable, all arguments should be Variable
|
|
"""
|
|
is_variable = False
|
|
is_number = False
|
|
for arg in args:
|
|
if isinstance(arg, tensor.Variable):
|
|
is_variable = True
|
|
else:
|
|
is_number = True
|
|
|
|
if is_variable and is_number:
|
|
raise ValueError(
|
|
'if one argument is Variable, all arguments should be Variable')
|
|
|
|
return is_variable
|
|
|
|
def _to_variable(self, *args):
|
|
"""
|
|
Argument convert args to Variable
|
|
|
|
Args:
|
|
value (float, list, numpy.ndarray, Variable)
|
|
Returns:
|
|
Variable of args.
|
|
"""
|
|
numpy_args = []
|
|
variable_args = []
|
|
tmp = 0.
|
|
|
|
for arg in args:
|
|
valid_arg = False
|
|
for cls in [float, list, np.ndarray, tensor.Variable]:
|
|
if isinstance(arg, cls):
|
|
valid_arg = True
|
|
break
|
|
assert valid_arg, "type of input args must be float, list, numpy.ndarray or Variable."
|
|
if isinstance(arg, float):
|
|
arg = np.zeros(1) + arg
|
|
arg_np = np.array(arg)
|
|
arg_dtype = arg_np.dtype
|
|
if str(arg_dtype) not in ['float32']:
|
|
warnings.warn(
|
|
"data type of argument only support float32, your argument will be convert to float32."
|
|
)
|
|
arg_np = arg_np.astype('float32')
|
|
tmp = tmp + arg_np
|
|
numpy_args.append(arg_np)
|
|
|
|
dtype = tmp.dtype
|
|
for arg in numpy_args:
|
|
arg_broadcasted, _ = np.broadcast_arrays(arg, tmp)
|
|
arg_variable = tensor.create_tensor(dtype=dtype)
|
|
tensor.assign(arg_broadcasted, arg_variable)
|
|
variable_args.append(arg_variable)
|
|
|
|
return tuple(variable_args)
|
|
|
|
|
|
class Uniform(Distribution):
|
|
"""Uniform distribution with `low` and `high` parameters.
|
|
|
|
Mathematical Details
|
|
|
|
The probability density function (pdf) is,
|
|
|
|
.. math::
|
|
|
|
pdf(x; a, b) = \\frac{1}{Z}, \ a <=x <b
|
|
|
|
.. math::
|
|
|
|
Z = b - a
|
|
|
|
In the above equation:
|
|
|
|
* :math:`low = a`,
|
|
* :math:`high = b`,
|
|
* :math:`Z`: is the normalizing constant.
|
|
|
|
The parameters `low` and `high` must be shaped in a way that supports
|
|
broadcasting (e.g., `high - low` is a valid operation).
|
|
|
|
Args:
|
|
low(float|list|numpy.ndarray|Variable): The lower boundary of uniform distribution.The data type is float32
|
|
high(float|list|numpy.ndarray|Variable): The higher boundary of uniform distribution.The data type is float32
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import numpy as np
|
|
from paddle.fluid import layers
|
|
from paddle.fluid.layers import Uniform
|
|
|
|
# Without broadcasting, a single uniform distribution [3, 4]:
|
|
u1 = Uniform(low=3.0, high=4.0)
|
|
# 2 distributions [1, 3], [2, 4]
|
|
u2 = Uniform(low=[1.0, 2.0],
|
|
high=[3.0, 4.0])
|
|
# 4 distributions
|
|
u3 = Uniform(low=[[1.0, 2.0],
|
|
[3.0, 4.0]],
|
|
high=[[1.5, 2.5],
|
|
[3.5, 4.5]])
|
|
|
|
# With broadcasting:
|
|
u4 = Uniform(low=3.0, high=[5.0, 6.0, 7.0])
|
|
|
|
# Complete example
|
|
value_npdata = np.array([0.8], dtype="float32")
|
|
value_tensor = layers.create_tensor(dtype="float32")
|
|
layers.assign(value_npdata, value_tensor)
|
|
|
|
uniform = Uniform([0.], [2.])
|
|
|
|
sample = uniform.sample([2])
|
|
# a random tensor created by uniform distribution with shape: [2, 1]
|
|
entropy = uniform.entropy()
|
|
# [0.6931472] with shape: [1]
|
|
lp = uniform.log_prob(value_tensor)
|
|
# [-0.6931472] with shape: [1]
|
|
"""
|
|
|
|
def __init__(self, low, high):
|
|
self.all_arg_is_float = False
|
|
self.batch_size_unknown = False
|
|
if self._validate_args(low, high):
|
|
self.batch_size_unknown = True
|
|
self.low = low
|
|
self.high = high
|
|
else:
|
|
if isinstance(low, float) and isinstance(high, float):
|
|
self.all_arg_is_float = True
|
|
self.low, self.high = self._to_variable(low, high)
|
|
|
|
def sample(self, shape, seed=0):
|
|
"""Generate samples of the specified shape.
|
|
|
|
Args:
|
|
shape (list): 1D `int32`. Shape of the generated samples.
|
|
seed (int): Python integer number.
|
|
|
|
Returns:
|
|
Variable: A tensor with prepended dimensions shape.The data type is float32.
|
|
|
|
"""
|
|
batch_shape = list((self.low + self.high).shape)
|
|
if self.batch_size_unknown:
|
|
output_shape = shape + batch_shape
|
|
zero_tmp = tensor.fill_constant_batch_size_like(
|
|
self.low + self.high, batch_shape + shape, self.low.dtype, 0.)
|
|
uniform_random_tmp = nn.uniform_random_batch_size_like(
|
|
zero_tmp, zero_tmp.shape, min=0., max=1., seed=seed)
|
|
output = uniform_random_tmp * (zero_tmp + self.high - self.low
|
|
) + self.low
|
|
return nn.reshape(output, output_shape)
|
|
else:
|
|
output_shape = shape + batch_shape
|
|
output = nn.uniform_random(
|
|
output_shape, seed=seed) * (tensor.zeros(
|
|
output_shape, dtype=self.low.dtype) +
|
|
(self.high - self.low)) + self.low
|
|
if self.all_arg_is_float:
|
|
return nn.reshape(output, shape)
|
|
else:
|
|
return output
|
|
|
|
def log_prob(self, value):
|
|
"""Log probability density/mass function.
|
|
|
|
Args:
|
|
value (Variable): The input tensor.
|
|
|
|
Returns:
|
|
Variable: log probability.The data type is same with value.
|
|
|
|
"""
|
|
lb_bool = control_flow.less_than(self.low, value)
|
|
ub_bool = control_flow.less_than(value, self.high)
|
|
lb = tensor.cast(lb_bool, dtype=value.dtype)
|
|
ub = tensor.cast(ub_bool, dtype=value.dtype)
|
|
return nn.log(lb * ub) - nn.log(self.high - self.low)
|
|
|
|
def entropy(self):
|
|
"""Shannon entropy in nats.
|
|
|
|
Returns:
|
|
Variable: Shannon entropy of uniform distribution.The data type is float32.
|
|
|
|
"""
|
|
return nn.log(self.high - self.low)
|
|
|
|
|
|
class Normal(Distribution):
|
|
"""The Normal distribution with location `loc` and `scale` parameters.
|
|
|
|
Mathematical details
|
|
|
|
The probability density function (pdf) is,
|
|
|
|
.. math::
|
|
|
|
pdf(x; \mu, \sigma) = \\frac{1}{Z}e^{\\frac {-0.5 (x - \mu)^2} {\sigma^2} }
|
|
|
|
.. math::
|
|
|
|
Z = (2 \pi \sigma^2)^{0.5}
|
|
|
|
In the above equation:
|
|
|
|
* :math:`loc = \mu`: is the mean.
|
|
* :math:`scale = \sigma`: is the std.
|
|
* :math:`Z`: is the normalization constant.
|
|
|
|
Args:
|
|
loc(float|list|numpy.ndarray|Variable): The mean of normal distribution.The data type is float32.
|
|
scale(float|list|numpy.ndarray|Variable): The std of normal distribution.The data type is float32.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
from paddle.fluid import layers
|
|
from paddle.fluid.layers import Normal
|
|
|
|
# Define a single scalar Normal distribution.
|
|
dist = Normal(loc=0., scale=3.)
|
|
# Define a batch of two scalar valued Normals.
|
|
# The first has mean 1 and standard deviation 11, the second 2 and 22.
|
|
dist = Normal(loc=[1., 2.], scale=[11., 22.])
|
|
# Get 3 samples, returning a 3 x 2 tensor.
|
|
dist.sample([3])
|
|
|
|
# Define a batch of two scalar valued Normals.
|
|
# Both have mean 1, but different standard deviations.
|
|
dist = Normal(loc=1., scale=[11., 22.])
|
|
|
|
# Define a batch of two scalar valued Normals.
|
|
# Both have mean 1, but different standard deviations.
|
|
dist = Normal(loc=1., scale=[11., 22.])
|
|
|
|
# Complete example
|
|
value_npdata = np.array([0.8], dtype="float32")
|
|
value_tensor = layers.create_tensor(dtype="float32")
|
|
layers.assign(value_npdata, value_tensor)
|
|
|
|
normal_a = Normal([0.], [1.])
|
|
normal_b = Normal([0.5], [2.])
|
|
|
|
sample = normal_a.sample([2])
|
|
# a random tensor created by normal distribution with shape: [2, 1]
|
|
entropy = normal_a.entropy()
|
|
# [1.4189385] with shape: [1]
|
|
lp = normal_a.log_prob(value_tensor)
|
|
# [-1.2389386] with shape: [1]
|
|
kl = normal_a.kl_divergence(normal_b)
|
|
# [0.34939718] with shape: [1]
|
|
"""
|
|
|
|
def __init__(self, loc, scale):
|
|
self.batch_size_unknown = False
|
|
self.all_arg_is_float = False
|
|
if self._validate_args(loc, scale):
|
|
self.batch_size_unknown = True
|
|
self.loc = loc
|
|
self.scale = scale
|
|
else:
|
|
if isinstance(loc, float) and isinstance(scale, float):
|
|
self.all_arg_is_float = True
|
|
self.loc, self.scale = self._to_variable(loc, scale)
|
|
|
|
def sample(self, shape, seed=0):
|
|
"""Generate samples of the specified shape.
|
|
|
|
Args:
|
|
shape (list): 1D `int32`. Shape of the generated samples.
|
|
seed (int): Python integer number.
|
|
|
|
Returns:
|
|
Variable: A tensor with prepended dimensions shape.The data type is float32.
|
|
|
|
"""
|
|
batch_shape = list((self.loc + self.scale).shape)
|
|
|
|
if self.batch_size_unknown:
|
|
output_shape = shape + batch_shape
|
|
zero_tmp = tensor.fill_constant_batch_size_like(
|
|
self.loc + self.scale, batch_shape + shape, self.loc.dtype, 0.)
|
|
normal_random_tmp = nn.gaussian_random_batch_size_like(
|
|
zero_tmp, zero_tmp.shape, mean=0., std=1., seed=seed)
|
|
output = normal_random_tmp * (zero_tmp + self.scale) + self.loc
|
|
return nn.reshape(output, output_shape)
|
|
else:
|
|
output_shape = shape + batch_shape
|
|
output = nn.gaussian_random(output_shape, mean=0., std=1., seed=seed) * \
|
|
(tensor.zeros(output_shape, dtype=self.loc.dtype) + self.scale) + self.loc
|
|
if self.all_arg_is_float:
|
|
return nn.reshape(output, shape)
|
|
else:
|
|
return output
|
|
|
|
def entropy(self):
|
|
"""Shannon entropy in nats.
|
|
|
|
Returns:
|
|
Variable: Shannon entropy of normal distribution.The data type is float32.
|
|
|
|
"""
|
|
batch_shape = list((self.loc + self.scale).shape)
|
|
zero_tmp = tensor.fill_constant_batch_size_like(
|
|
self.loc + self.scale, batch_shape, self.loc.dtype, 0.)
|
|
return 0.5 + 0.5 * math.log(2 * math.pi) + nn.log(
|
|
(self.scale + zero_tmp))
|
|
|
|
def log_prob(self, value):
|
|
"""Log probability density/mass function.
|
|
|
|
Args:
|
|
value (Variable): The input tensor.
|
|
|
|
Returns:
|
|
Variable: log probability.The data type is same with value.
|
|
|
|
"""
|
|
var = self.scale * self.scale
|
|
log_scale = nn.log(self.scale)
|
|
return -1. * ((value - self.loc) * (value - self.loc)) / (
|
|
2. * var) - log_scale - math.log(math.sqrt(2. * math.pi))
|
|
|
|
def kl_divergence(self, other):
|
|
"""The KL-divergence between two normal distributions.
|
|
|
|
Args:
|
|
other (Normal): instance of Normal.
|
|
|
|
Returns:
|
|
Variable: kl-divergence between two normal distributions.The data type is float32.
|
|
|
|
"""
|
|
assert isinstance(other, Normal), "another distribution must be Normal"
|
|
var_ratio = self.scale / other.scale
|
|
var_ratio = (var_ratio * var_ratio)
|
|
t1 = (self.loc - other.loc) / other.scale
|
|
t1 = (t1 * t1)
|
|
return 0.5 * (var_ratio + t1 - 1. - nn.log(var_ratio))
|
|
|
|
|
|
class Categorical(Distribution):
|
|
"""
|
|
Categorical distribution is a discrete probability distribution that
|
|
describes the possible results of a random variable that can take on
|
|
one of K possible categories, with the probability of each category
|
|
separately specified.
|
|
|
|
The probability mass function (pmf) is:
|
|
|
|
.. math::
|
|
|
|
pmf(k; p_i) = \prod_{i=1}^{k} p_i^{[x=i]}
|
|
|
|
In the above equation:
|
|
|
|
* :math:`[x=i]` : it evaluates to 1 if :math:`x==i` , 0 otherwise.
|
|
|
|
Args:
|
|
logits(list|numpy.ndarray|Variable): The logits input of categorical distribution. The data type is float32.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import numpy as np
|
|
from paddle.fluid import layers
|
|
from paddle.fluid.layers import Categorical
|
|
|
|
a_logits_npdata = np.array([-0.602,-0.602], dtype="float32")
|
|
a_logits_tensor = layers.create_tensor(dtype="float32")
|
|
layers.assign(a_logits_npdata, a_logits_tensor)
|
|
|
|
b_logits_npdata = np.array([-0.102,-0.112], dtype="float32")
|
|
b_logits_tensor = layers.create_tensor(dtype="float32")
|
|
layers.assign(b_logits_npdata, b_logits_tensor)
|
|
|
|
a = Categorical(a_logits_tensor)
|
|
b = Categorical(b_logits_tensor)
|
|
|
|
a.entropy()
|
|
# [0.6931472] with shape: [1]
|
|
|
|
b.entropy()
|
|
# [0.6931347] with shape: [1]
|
|
|
|
a.kl_divergence(b)
|
|
# [1.2516975e-05] with shape: [1]
|
|
|
|
"""
|
|
|
|
def __init__(self, logits):
|
|
"""
|
|
Args:
|
|
logits(list|numpy.ndarray|Variable): The logits input of categorical distribution. The data type is float32.
|
|
"""
|
|
if self._validate_args(logits):
|
|
self.logits = logits
|
|
else:
|
|
self.logits = self._to_variable(logits)[0]
|
|
|
|
def kl_divergence(self, other):
|
|
"""The KL-divergence between two Categorical distributions.
|
|
|
|
Args:
|
|
other (Categorical): instance of Categorical. The data type is float32.
|
|
|
|
Returns:
|
|
Variable: kl-divergence between two Categorical distributions.
|
|
|
|
"""
|
|
assert isinstance(other, Categorical)
|
|
|
|
logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
|
|
other_logits = other.logits - nn.reduce_max(
|
|
other.logits, dim=-1, keep_dim=True)
|
|
e_logits = ops.exp(logits)
|
|
other_e_logits = ops.exp(other_logits)
|
|
z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
|
|
other_z = nn.reduce_sum(other_e_logits, dim=-1, keep_dim=True)
|
|
prob = e_logits / z
|
|
kl = nn.reduce_sum(
|
|
prob * (logits - nn.log(z) - other_logits + nn.log(other_z)),
|
|
dim=-1,
|
|
keep_dim=True)
|
|
|
|
return kl
|
|
|
|
def entropy(self):
|
|
"""Shannon entropy in nats.
|
|
|
|
Returns:
|
|
Variable: Shannon entropy of Categorical distribution. The data type is float32.
|
|
|
|
"""
|
|
logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
|
|
e_logits = ops.exp(logits)
|
|
z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
|
|
prob = e_logits / z
|
|
entropy = -1.0 * nn.reduce_sum(
|
|
prob * (logits - nn.log(z)), dim=-1, keep_dim=True)
|
|
|
|
return entropy
|
|
|
|
|
|
class MultivariateNormalDiag(Distribution):
|
|
"""
|
|
A multivariate normal (also called Gaussian) distribution parameterized by a mean vector
|
|
and a covariance matrix.
|
|
|
|
The probability density function (pdf) is:
|
|
|
|
.. math::
|
|
|
|
pdf(x; loc, scale) = \\frac{e^{-\\frac{||y||^2}{2}}}{Z}
|
|
|
|
where:
|
|
.. math::
|
|
|
|
y = inv(scale) @ (x - loc)
|
|
Z = (2\\pi)^{0.5k} |det(scale)|
|
|
|
|
|
|
In the above equation:
|
|
|
|
* :math:`inv` : denotes to take the inverse of the matrix.
|
|
* :math:`@` : denotes matrix multiplication.
|
|
* :math:`det` : denotes to evaluate the determinant.
|
|
|
|
Args:
|
|
loc(list|numpy.ndarray|Variable): The mean of multivariateNormal distribution with shape :math:`[k]` .
|
|
The data type is float32.
|
|
scale(list|numpy.ndarray|Variable): The positive definite diagonal covariance matrix of multivariateNormal
|
|
distribution with shape :math:`[k, k]` . All elements are 0 except diagonal elements. The data type is
|
|
float32.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import numpy as np
|
|
from paddle.fluid import layers
|
|
from paddle.fluid.layers import MultivariateNormalDiag
|
|
|
|
a_loc_npdata = np.array([0.3,0.5],dtype="float32")
|
|
a_loc_tensor = layers.create_tensor(dtype="float32")
|
|
layers.assign(a_loc_npdata, a_loc_tensor)
|
|
|
|
|
|
a_scale_npdata = np.array([[0.4,0],[0,0.5]],dtype="float32")
|
|
a_scale_tensor = layers.create_tensor(dtype="float32")
|
|
layers.assign(a_scale_npdata, a_scale_tensor)
|
|
|
|
b_loc_npdata = np.array([0.2,0.4],dtype="float32")
|
|
b_loc_tensor = layers.create_tensor(dtype="float32")
|
|
layers.assign(b_loc_npdata, b_loc_tensor)
|
|
|
|
b_scale_npdata = np.array([[0.3,0],[0,0.4]],dtype="float32")
|
|
b_scale_tensor = layers.create_tensor(dtype="float32")
|
|
layers.assign(b_scale_npdata, b_scale_tensor)
|
|
|
|
a = MultivariateNormalDiag(a_loc_tensor, a_scale_tensor)
|
|
b = MultivariateNormalDiag(b_loc_tensor, b_scale_tensor)
|
|
|
|
a.entropy()
|
|
# [2.033158] with shape: [1]
|
|
b.entropy()
|
|
# [1.7777451] with shape: [1]
|
|
|
|
a.kl_divergence(b)
|
|
# [0.06542051] with shape: [1]
|
|
|
|
"""
|
|
|
|
def __init__(self, loc, scale):
|
|
if self._validate_args(loc, scale):
|
|
self.loc = loc
|
|
self.scale = scale
|
|
else:
|
|
self.loc, self.scale = self._to_variable(loc, scale)
|
|
|
|
def _det(self, value):
|
|
|
|
batch_shape = list(value.shape)
|
|
one_all = tensor.ones(shape=batch_shape, dtype=self.loc.dtype)
|
|
one_diag = tensor.diag(
|
|
tensor.ones(
|
|
shape=[batch_shape[0]], dtype=self.loc.dtype))
|
|
det_diag = nn.reduce_prod(value + one_all - one_diag)
|
|
|
|
return det_diag
|
|
|
|
def _inv(self, value):
|
|
|
|
batch_shape = list(value.shape)
|
|
one_all = tensor.ones(shape=batch_shape, dtype=self.loc.dtype)
|
|
one_diag = tensor.diag(
|
|
tensor.ones(
|
|
shape=[batch_shape[0]], dtype=self.loc.dtype))
|
|
inv_diag = nn.elementwise_pow(value, (one_all - 2 * one_diag))
|
|
|
|
return inv_diag
|
|
|
|
def entropy(self):
|
|
"""Shannon entropy in nats.
|
|
|
|
Returns:
|
|
Variable: Shannon entropy of Multivariate Normal distribution. The data type is float32.
|
|
|
|
"""
|
|
entropy = 0.5 * (
|
|
self.scale.shape[0] *
|
|
(1.0 + math.log(2 * math.pi)) + nn.log(self._det(self.scale)))
|
|
|
|
return entropy
|
|
|
|
def kl_divergence(self, other):
|
|
"""The KL-divergence between two Multivariate Normal distributions.
|
|
|
|
Args:
|
|
other (MultivariateNormalDiag): instance of Multivariate Normal.
|
|
|
|
Returns:
|
|
Variable: kl-divergence between two Multivariate Normal distributions. The data type is float32.
|
|
|
|
"""
|
|
assert isinstance(other, MultivariateNormalDiag)
|
|
|
|
tr_cov_matmul = nn.reduce_sum(self._inv(other.scale) * self.scale)
|
|
loc_matmul_cov = nn.matmul((other.loc - self.loc),
|
|
self._inv(other.scale))
|
|
tri_matmul = nn.matmul(loc_matmul_cov, (other.loc - self.loc))
|
|
k = list(self.scale.shape)[0]
|
|
ln_cov = nn.log(self._det(other.scale)) - nn.log(self._det(self.scale))
|
|
kl = 0.5 * (tr_cov_matmul + tri_matmul - k + ln_cov)
|
|
|
|
return kl
|