You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/layers/distributions.py

634 lines
21 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from . import control_flow
from . import tensor
from . import ops
from . import nn
import math
import numpy as np
import warnings
__all__ = ['Uniform', 'Normal', 'Categorical', 'MultivariateNormalDiag']
class Distribution(object):
"""
Distribution is the abstract base class for probability distributions.
"""
def sample(self):
"""Sampling from the distribution."""
raise NotImplementedError
def entropy(self):
"""The entropy of the distribution."""
raise NotImplementedError
def kl_divergence(self, other):
"""The KL-divergence between self distributions and other."""
raise NotImplementedError
def log_prob(self, value):
"""Log probability density/mass function."""
raise NotImplementedError
def _validate_args(self, *args):
"""
Argument validation for distribution args
Args:
value (float, list, numpy.ndarray, Variable)
Raises
ValueError: if one argument is Variable, all arguments should be Variable
"""
is_variable = False
is_number = False
for arg in args:
if isinstance(arg, tensor.Variable):
is_variable = True
else:
is_number = True
if is_variable and is_number:
raise ValueError(
'if one argument is Variable, all arguments should be Variable')
return is_variable
def _to_variable(self, *args):
"""
Argument convert args to Variable
Args:
value (float, list, numpy.ndarray, Variable)
Returns:
Variable of args.
"""
numpy_args = []
variable_args = []
tmp = 0.
for arg in args:
valid_arg = False
for cls in [float, list, np.ndarray, tensor.Variable]:
if isinstance(arg, cls):
valid_arg = True
break
assert valid_arg, "type of input args must be float, list, numpy.ndarray or Variable."
if isinstance(arg, float):
arg = np.zeros(1) + arg
arg_np = np.array(arg)
arg_dtype = arg_np.dtype
if str(arg_dtype) not in ['float32']:
warnings.warn(
"data type of argument only support float32, your argument will be convert to float32."
)
arg_np = arg_np.astype('float32')
tmp = tmp + arg_np
numpy_args.append(arg_np)
dtype = tmp.dtype
for arg in numpy_args:
arg_broadcasted, _ = np.broadcast_arrays(arg, tmp)
arg_variable = tensor.create_tensor(dtype=dtype)
tensor.assign(arg_broadcasted, arg_variable)
variable_args.append(arg_variable)
return tuple(variable_args)
class Uniform(Distribution):
"""Uniform distribution with `low` and `high` parameters.
Mathematical Details
The probability density function (pdf) is,
.. math::
pdf(x; a, b) = \\frac{1}{Z}, \ a <=x <b
.. math::
Z = b - a
In the above equation:
* :math:`low = a`,
* :math:`high = b`,
* :math:`Z`: is the normalizing constant.
The parameters `low` and `high` must be shaped in a way that supports
broadcasting (e.g., `high - low` is a valid operation).
Args:
low(float|list|numpy.ndarray|Variable): The lower boundary of uniform distribution.The data type is float32
high(float|list|numpy.ndarray|Variable): The higher boundary of uniform distribution.The data type is float32
Examples:
.. code-block:: python
import numpy as np
from paddle.fluid import layers
from paddle.fluid.layers import Uniform
# Without broadcasting, a single uniform distribution [3, 4]:
u1 = Uniform(low=3.0, high=4.0)
# 2 distributions [1, 3], [2, 4]
u2 = Uniform(low=[1.0, 2.0],
high=[3.0, 4.0])
# 4 distributions
u3 = Uniform(low=[[1.0, 2.0],
[3.0, 4.0]],
high=[[1.5, 2.5],
[3.5, 4.5]])
# With broadcasting:
u4 = Uniform(low=3.0, high=[5.0, 6.0, 7.0])
# Complete example
value_npdata = np.array([0.8], dtype="float32")
value_tensor = layers.create_tensor(dtype="float32")
layers.assign(value_npdata, value_tensor)
uniform = Uniform([0.], [2.])
sample = uniform.sample([2])
# a random tensor created by uniform distribution with shape: [2, 1]
entropy = uniform.entropy()
# [0.6931472] with shape: [1]
lp = uniform.log_prob(value_tensor)
# [-0.6931472] with shape: [1]
"""
def __init__(self, low, high):
self.all_arg_is_float = False
self.batch_size_unknown = False
if self._validate_args(low, high):
self.batch_size_unknown = True
self.low = low
self.high = high
else:
if isinstance(low, float) and isinstance(high, float):
self.all_arg_is_float = True
self.low, self.high = self._to_variable(low, high)
def sample(self, shape, seed=0):
"""Generate samples of the specified shape.
Args:
shape (list): 1D `int32`. Shape of the generated samples.
seed (int): Python integer number.
Returns:
Variable: A tensor with prepended dimensions shape.The data type is float32.
"""
batch_shape = list((self.low + self.high).shape)
if self.batch_size_unknown:
output_shape = shape + batch_shape
zero_tmp = tensor.fill_constant_batch_size_like(
self.low + self.high, batch_shape + shape, self.low.dtype, 0.)
uniform_random_tmp = nn.uniform_random_batch_size_like(
zero_tmp, zero_tmp.shape, min=0., max=1., seed=seed)
output = uniform_random_tmp * (zero_tmp + self.high - self.low
) + self.low
return nn.reshape(output, output_shape)
else:
output_shape = shape + batch_shape
output = nn.uniform_random(
output_shape, seed=seed) * (tensor.zeros(
output_shape, dtype=self.low.dtype) +
(self.high - self.low)) + self.low
if self.all_arg_is_float:
return nn.reshape(output, shape)
else:
return output
def log_prob(self, value):
"""Log probability density/mass function.
Args:
value (Variable): The input tensor.
Returns:
Variable: log probability.The data type is same with value.
"""
lb_bool = control_flow.less_than(self.low, value)
ub_bool = control_flow.less_than(value, self.high)
lb = tensor.cast(lb_bool, dtype=value.dtype)
ub = tensor.cast(ub_bool, dtype=value.dtype)
return nn.log(lb * ub) - nn.log(self.high - self.low)
def entropy(self):
"""Shannon entropy in nats.
Returns:
Variable: Shannon entropy of uniform distribution.The data type is float32.
"""
return nn.log(self.high - self.low)
class Normal(Distribution):
"""The Normal distribution with location `loc` and `scale` parameters.
Mathematical details
The probability density function (pdf) is,
.. math::
pdf(x; \mu, \sigma) = \\frac{1}{Z}e^{\\frac {-0.5 (x - \mu)^2} {\sigma^2} }
.. math::
Z = (2 \pi \sigma^2)^{0.5}
In the above equation:
* :math:`loc = \mu`: is the mean.
* :math:`scale = \sigma`: is the std.
* :math:`Z`: is the normalization constant.
Args:
loc(float|list|numpy.ndarray|Variable): The mean of normal distribution.The data type is float32.
scale(float|list|numpy.ndarray|Variable): The std of normal distribution.The data type is float32.
Examples:
.. code-block:: python
from paddle.fluid import layers
from paddle.fluid.layers import Normal
# Define a single scalar Normal distribution.
dist = Normal(loc=0., scale=3.)
# Define a batch of two scalar valued Normals.
# The first has mean 1 and standard deviation 11, the second 2 and 22.
dist = Normal(loc=[1., 2.], scale=[11., 22.])
# Get 3 samples, returning a 3 x 2 tensor.
dist.sample([3])
# Define a batch of two scalar valued Normals.
# Both have mean 1, but different standard deviations.
dist = Normal(loc=1., scale=[11., 22.])
# Define a batch of two scalar valued Normals.
# Both have mean 1, but different standard deviations.
dist = Normal(loc=1., scale=[11., 22.])
# Complete example
value_npdata = np.array([0.8], dtype="float32")
value_tensor = layers.create_tensor(dtype="float32")
layers.assign(value_npdata, value_tensor)
normal_a = Normal([0.], [1.])
normal_b = Normal([0.5], [2.])
sample = normal_a.sample([2])
# a random tensor created by normal distribution with shape: [2, 1]
entropy = normal_a.entropy()
# [1.4189385] with shape: [1]
lp = normal_a.log_prob(value_tensor)
# [-1.2389386] with shape: [1]
kl = normal_a.kl_divergence(normal_b)
# [0.34939718] with shape: [1]
"""
def __init__(self, loc, scale):
self.batch_size_unknown = False
self.all_arg_is_float = False
if self._validate_args(loc, scale):
self.batch_size_unknown = True
self.loc = loc
self.scale = scale
else:
if isinstance(loc, float) and isinstance(scale, float):
self.all_arg_is_float = True
self.loc, self.scale = self._to_variable(loc, scale)
def sample(self, shape, seed=0):
"""Generate samples of the specified shape.
Args:
shape (list): 1D `int32`. Shape of the generated samples.
seed (int): Python integer number.
Returns:
Variable: A tensor with prepended dimensions shape.The data type is float32.
"""
batch_shape = list((self.loc + self.scale).shape)
if self.batch_size_unknown:
output_shape = shape + batch_shape
zero_tmp = tensor.fill_constant_batch_size_like(
self.loc + self.scale, batch_shape + shape, self.loc.dtype, 0.)
normal_random_tmp = nn.gaussian_random_batch_size_like(
zero_tmp, zero_tmp.shape, mean=0., std=1., seed=seed)
output = normal_random_tmp * (zero_tmp + self.scale) + self.loc
return nn.reshape(output, output_shape)
else:
output_shape = shape + batch_shape
output = nn.gaussian_random(output_shape, mean=0., std=1., seed=seed) * \
(tensor.zeros(output_shape, dtype=self.loc.dtype) + self.scale) + self.loc
if self.all_arg_is_float:
return nn.reshape(output, shape)
else:
return output
def entropy(self):
"""Shannon entropy in nats.
Returns:
Variable: Shannon entropy of normal distribution.The data type is float32.
"""
batch_shape = list((self.loc + self.scale).shape)
zero_tmp = tensor.fill_constant_batch_size_like(
self.loc + self.scale, batch_shape, self.loc.dtype, 0.)
return 0.5 + 0.5 * math.log(2 * math.pi) + nn.log(
(self.scale + zero_tmp))
def log_prob(self, value):
"""Log probability density/mass function.
Args:
value (Variable): The input tensor.
Returns:
Variable: log probability.The data type is same with value.
"""
var = self.scale * self.scale
log_scale = nn.log(self.scale)
return -1. * ((value - self.loc) * (value - self.loc)) / (
2. * var) - log_scale - math.log(math.sqrt(2. * math.pi))
def kl_divergence(self, other):
"""The KL-divergence between two normal distributions.
Args:
other (Normal): instance of Normal.
Returns:
Variable: kl-divergence between two normal distributions.The data type is float32.
"""
assert isinstance(other, Normal), "another distribution must be Normal"
var_ratio = self.scale / other.scale
var_ratio = (var_ratio * var_ratio)
t1 = (self.loc - other.loc) / other.scale
t1 = (t1 * t1)
return 0.5 * (var_ratio + t1 - 1. - nn.log(var_ratio))
class Categorical(Distribution):
"""
Categorical distribution is a discrete probability distribution that
describes the possible results of a random variable that can take on
one of K possible categories, with the probability of each category
separately specified.
The probability mass function (pmf) is:
.. math::
pmf(k; p_i) = \prod_{i=1}^{k} p_i^{[x=i]}
In the above equation:
* :math:`[x=i]` : it evaluates to 1 if :math:`x==i` , 0 otherwise.
Args:
logits(list|numpy.ndarray|Variable): The logits input of categorical distribution. The data type is float32.
Examples:
.. code-block:: python
import numpy as np
from paddle.fluid import layers
from paddle.fluid.layers import Categorical
a_logits_npdata = np.array([-0.602,-0.602], dtype="float32")
a_logits_tensor = layers.create_tensor(dtype="float32")
layers.assign(a_logits_npdata, a_logits_tensor)
b_logits_npdata = np.array([-0.102,-0.112], dtype="float32")
b_logits_tensor = layers.create_tensor(dtype="float32")
layers.assign(b_logits_npdata, b_logits_tensor)
a = Categorical(a_logits_tensor)
b = Categorical(b_logits_tensor)
a.entropy()
# [0.6931472] with shape: [1]
b.entropy()
# [0.6931347] with shape: [1]
a.kl_divergence(b)
# [1.2516975e-05] with shape: [1]
"""
def __init__(self, logits):
"""
Args:
logits(list|numpy.ndarray|Variable): The logits input of categorical distribution. The data type is float32.
"""
if self._validate_args(logits):
self.logits = logits
else:
self.logits = self._to_variable(logits)[0]
def kl_divergence(self, other):
"""The KL-divergence between two Categorical distributions.
Args:
other (Categorical): instance of Categorical. The data type is float32.
Returns:
Variable: kl-divergence between two Categorical distributions.
"""
assert isinstance(other, Categorical)
logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
other_logits = other.logits - nn.reduce_max(
other.logits, dim=-1, keep_dim=True)
e_logits = ops.exp(logits)
other_e_logits = ops.exp(other_logits)
z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
other_z = nn.reduce_sum(other_e_logits, dim=-1, keep_dim=True)
prob = e_logits / z
kl = nn.reduce_sum(
prob * (logits - nn.log(z) - other_logits + nn.log(other_z)),
dim=-1,
keep_dim=True)
return kl
def entropy(self):
"""Shannon entropy in nats.
Returns:
Variable: Shannon entropy of Categorical distribution. The data type is float32.
"""
logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
e_logits = ops.exp(logits)
z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
prob = e_logits / z
entropy = -1.0 * nn.reduce_sum(
prob * (logits - nn.log(z)), dim=-1, keep_dim=True)
return entropy
class MultivariateNormalDiag(Distribution):
"""
A multivariate normal (also called Gaussian) distribution parameterized by a mean vector
and a covariance matrix.
The probability density function (pdf) is:
.. math::
pdf(x; loc, scale) = \\frac{e^{-\\frac{||y||^2}{2}}}{Z}
where:
.. math::
y = inv(scale) @ (x - loc)
Z = (2\\pi)^{0.5k} |det(scale)|
In the above equation:
* :math:`inv` : denotes to take the inverse of the matrix.
* :math:`@` : denotes matrix multiplication.
* :math:`det` : denotes to evaluate the determinant.
Args:
loc(list|numpy.ndarray|Variable): The mean of multivariateNormal distribution with shape :math:`[k]` .
The data type is float32.
scale(list|numpy.ndarray|Variable): The positive definite diagonal covariance matrix of multivariateNormal
distribution with shape :math:`[k, k]` . All elements are 0 except diagonal elements. The data type is
float32.
Examples:
.. code-block:: python
import numpy as np
from paddle.fluid import layers
from paddle.fluid.layers import MultivariateNormalDiag
a_loc_npdata = np.array([0.3,0.5],dtype="float32")
a_loc_tensor = layers.create_tensor(dtype="float32")
layers.assign(a_loc_npdata, a_loc_tensor)
a_scale_npdata = np.array([[0.4,0],[0,0.5]],dtype="float32")
a_scale_tensor = layers.create_tensor(dtype="float32")
layers.assign(a_scale_npdata, a_scale_tensor)
b_loc_npdata = np.array([0.2,0.4],dtype="float32")
b_loc_tensor = layers.create_tensor(dtype="float32")
layers.assign(b_loc_npdata, b_loc_tensor)
b_scale_npdata = np.array([[0.3,0],[0,0.4]],dtype="float32")
b_scale_tensor = layers.create_tensor(dtype="float32")
layers.assign(b_scale_npdata, b_scale_tensor)
a = MultivariateNormalDiag(a_loc_tensor, a_scale_tensor)
b = MultivariateNormalDiag(b_loc_tensor, b_scale_tensor)
a.entropy()
# [2.033158] with shape: [1]
b.entropy()
# [1.7777451] with shape: [1]
a.kl_divergence(b)
# [0.06542051] with shape: [1]
"""
def __init__(self, loc, scale):
if self._validate_args(loc, scale):
self.loc = loc
self.scale = scale
else:
self.loc, self.scale = self._to_variable(loc, scale)
def _det(self, value):
batch_shape = list(value.shape)
one_all = tensor.ones(shape=batch_shape, dtype=self.loc.dtype)
one_diag = tensor.diag(
tensor.ones(
shape=[batch_shape[0]], dtype=self.loc.dtype))
det_diag = nn.reduce_prod(value + one_all - one_diag)
return det_diag
def _inv(self, value):
batch_shape = list(value.shape)
one_all = tensor.ones(shape=batch_shape, dtype=self.loc.dtype)
one_diag = tensor.diag(
tensor.ones(
shape=[batch_shape[0]], dtype=self.loc.dtype))
inv_diag = nn.elementwise_pow(value, (one_all - 2 * one_diag))
return inv_diag
def entropy(self):
"""Shannon entropy in nats.
Returns:
Variable: Shannon entropy of Multivariate Normal distribution. The data type is float32.
"""
entropy = 0.5 * (
self.scale.shape[0] *
(1.0 + math.log(2 * math.pi)) + nn.log(self._det(self.scale)))
return entropy
def kl_divergence(self, other):
"""The KL-divergence between two Multivariate Normal distributions.
Args:
other (MultivariateNormalDiag): instance of Multivariate Normal.
Returns:
Variable: kl-divergence between two Multivariate Normal distributions. The data type is float32.
"""
assert isinstance(other, MultivariateNormalDiag)
tr_cov_matmul = nn.reduce_sum(self._inv(other.scale) * self.scale)
loc_matmul_cov = nn.matmul((other.loc - self.loc),
self._inv(other.scale))
tri_matmul = nn.matmul(loc_matmul_cov, (other.loc - self.loc))
k = list(self.scale.shape)[0]
ln_cov = nn.log(self._det(other.scale)) - nn.log(self._det(self.scale))
kl = 0.5 * (tr_cov_matmul + tri_matmul - k + ln_cov)
return kl