You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
250 lines
9.5 KiB
250 lines
9.5 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
All layers just related to metric.
|
|
"""
|
|
|
|
from __future__ import print_function
|
|
|
|
import warnings
|
|
from ..layer_helper import LayerHelper
|
|
from ..initializer import Normal, Constant
|
|
from ..framework import Variable, in_dygraph_mode, _varbase_creator
|
|
from .. import core
|
|
from ..param_attr import ParamAttr
|
|
from . import nn
|
|
from ..data_feeder import check_variable_and_dtype
|
|
|
|
__all__ = ['accuracy', 'auc']
|
|
|
|
|
|
def accuracy(input, label, k=1, correct=None, total=None):
|
|
"""
|
|
accuracy layer.
|
|
Refer to the https://en.wikipedia.org/wiki/Precision_and_recall
|
|
|
|
This function computes the accuracy using the input and label.
|
|
If the correct label occurs in top k predictions, then correct will increment by one.
|
|
Note: the dtype of accuracy is determined by input. the input and label dtype can be different.
|
|
|
|
Args:
|
|
input(Variable): The input of accuracy layer, which is the predictions of network. A LoDTensor or Tensor with type float32,float64.
|
|
The shape is ``[sample_number, class_dim]`` .
|
|
label(Variable): The label of dataset. LoDTensor or Tensor with type int32,int64. The shape is ``[sample_number, 1]`` .
|
|
k(int): The top k predictions for each class will be checked. Data type is int64 or int32.
|
|
correct(Variable): The correct predictions count. A Tensor with type int64 or int32.
|
|
total(Variable): The total entries count. A tensor with type int64 or int32.
|
|
|
|
Returns:
|
|
Variable: The correct rate. A Tensor with type float32.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.fluid as fluid
|
|
import numpy as np
|
|
|
|
data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
|
|
label = fluid.data(name="label", shape=[-1,1], dtype="int")
|
|
fc_out = fluid.layers.fc(input=data, size=10)
|
|
predict = fluid.layers.softmax(input=fc_out)
|
|
result = fluid.layers.accuracy(input=predict, label=label, k=5)
|
|
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
x = np.random.rand(3, 32, 32).astype("float32")
|
|
y = np.array([[1],[0],[1]])
|
|
output= exe.run(feed={"input": x,"label": y},
|
|
fetch_list=[result[0]])
|
|
print(output)
|
|
|
|
#[array([0.6666667], dtype=float32)]
|
|
"""
|
|
if in_dygraph_mode():
|
|
if correct is None:
|
|
correct = _varbase_creator(dtype="int32")
|
|
if total is None:
|
|
total = _varbase_creator(dtype="int32")
|
|
|
|
topk_out, topk_indices = nn.topk(input, k=k)
|
|
_acc, _, _ = core.ops.accuracy(topk_out, topk_indices, label, correct,
|
|
total)
|
|
return _acc
|
|
|
|
helper = LayerHelper("accuracy", **locals())
|
|
check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
|
|
'accuracy')
|
|
topk_out, topk_indices = nn.topk(input, k=k)
|
|
acc_out = helper.create_variable_for_type_inference(dtype="float32")
|
|
if correct is None:
|
|
correct = helper.create_variable_for_type_inference(dtype="int32")
|
|
if total is None:
|
|
total = helper.create_variable_for_type_inference(dtype="int32")
|
|
helper.append_op(
|
|
type="accuracy",
|
|
inputs={
|
|
"Out": [topk_out],
|
|
"Indices": [topk_indices],
|
|
"Label": [label]
|
|
},
|
|
outputs={
|
|
"Accuracy": [acc_out],
|
|
"Correct": [correct],
|
|
"Total": [total],
|
|
})
|
|
return acc_out
|
|
|
|
|
|
def auc(input,
|
|
label,
|
|
curve='ROC',
|
|
num_thresholds=2**12 - 1,
|
|
topk=1,
|
|
slide_steps=1):
|
|
"""
|
|
**Area Under the Curve (AUC) Layer**
|
|
|
|
This implementation computes the AUC according to forward output and label.
|
|
It is used very widely in binary classification evaluation.
|
|
|
|
Note: If input label contains values other than 0 and 1, it will be cast
|
|
to `bool`. Find the relevant definitions `here <https://en.wikipedia.org\
|
|
/wiki/Receiver_operating_characteristic#Area_under_the_curve>`_.
|
|
|
|
There are two types of possible curves:
|
|
|
|
1. ROC: Receiver operating characteristic;
|
|
2. PR: Precision Recall
|
|
|
|
Args:
|
|
input(Variable): A floating-point 2D Variable, values are in the range
|
|
[0, 1]. Each row is sorted in descending order. This
|
|
input should be the output of topk. Typically, this
|
|
Variable indicates the probability of each label.
|
|
A LoDTensor or Tensor with type float32,float64.
|
|
label(Variable): A 2D int Variable indicating the label of the training
|
|
data. The height is batch size and width is always 1.
|
|
A LoDTensor or Tensor with type int32,int64.
|
|
curve(str): Curve type, can be 'ROC' or 'PR'. Default 'ROC'.
|
|
num_thresholds(int): The number of thresholds to use when discretizing
|
|
the roc curve. Default 200.
|
|
topk(int): only topk number of prediction output will be used for auc.
|
|
slide_steps: when calc batch auc, we can not only use step currently but the previous steps can be used. slide_steps=1 means use the current step, slide_steps=3 means use current step and the previous second steps, slide_steps=0 use all of the steps.
|
|
|
|
|
|
Returns:
|
|
Variable: A tuple representing the current AUC.
|
|
The return tuple is auc_out, batch_auc_out, [
|
|
batch_stat_pos, batch_stat_neg, stat_pos, stat_neg ]
|
|
Data type is Tensor, supporting float32, float64.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.fluid as fluid
|
|
import numpy as np
|
|
|
|
data = fluid.data(name="input", shape=[-1, 32,32], dtype="float32")
|
|
label = fluid.data(name="label", shape=[-1], dtype="int")
|
|
fc_out = fluid.layers.fc(input=data, size=2)
|
|
predict = fluid.layers.softmax(input=fc_out)
|
|
result=fluid.layers.auc(input=predict, label=label)
|
|
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
x = np.random.rand(3,32,32).astype("float32")
|
|
y = np.array([1,0,1])
|
|
output= exe.run(feed={"input": x,"label": y},
|
|
fetch_list=[result[0]])
|
|
print(output)
|
|
#[array([0.5])]
|
|
"""
|
|
helper = LayerHelper("auc", **locals())
|
|
auc_out = helper.create_variable_for_type_inference(dtype="float64")
|
|
batch_auc_out = helper.create_variable_for_type_inference(dtype="float64")
|
|
# make tp, tn, fp, fn persistable, so that can accumulate all batches.
|
|
|
|
# for batch auc
|
|
# we create slide_step+1 buckets, the first slide_steps buckets store
|
|
# historical batch-level values, and the last bucket stores the sum values of
|
|
# previous slide_step buckets.
|
|
# The index of bucket that the newest batch will use is determined by batch_id mod slide_steps,
|
|
# and batch_id is store in the last posision of following variable
|
|
batch_stat_pos = helper.create_global_variable(
|
|
persistable=True,
|
|
dtype='int64',
|
|
shape=[(1 + slide_steps) * (num_thresholds + 1) + 1])
|
|
batch_stat_neg = helper.create_global_variable(
|
|
persistable=True,
|
|
dtype='int64',
|
|
shape=[(1 + slide_steps) * (num_thresholds + 1) + 1])
|
|
|
|
# for global auc
|
|
# Needn't maintain the batch id
|
|
stat_pos = helper.create_global_variable(
|
|
persistable=True, dtype='int64', shape=[1, num_thresholds + 1])
|
|
stat_neg = helper.create_global_variable(
|
|
persistable=True, dtype='int64', shape=[1, num_thresholds + 1])
|
|
|
|
for var in [batch_stat_pos, batch_stat_neg, stat_pos, stat_neg]:
|
|
helper.set_variable_initializer(
|
|
var, Constant(
|
|
value=0.0, force_cpu=False))
|
|
|
|
# Batch AUC
|
|
helper.append_op(
|
|
type="auc",
|
|
inputs={
|
|
"Predict": [input],
|
|
"Label": [label],
|
|
"StatPos": [batch_stat_pos],
|
|
"StatNeg": [batch_stat_neg]
|
|
},
|
|
attrs={
|
|
"curve": curve,
|
|
"num_thresholds": num_thresholds,
|
|
"slide_steps": slide_steps
|
|
},
|
|
outputs={
|
|
"AUC": [batch_auc_out],
|
|
"StatPosOut": [batch_stat_pos],
|
|
"StatNegOut": [batch_stat_neg]
|
|
})
|
|
# Global AUC
|
|
helper.append_op(
|
|
type="auc",
|
|
inputs={
|
|
"Predict": [input],
|
|
"Label": [label],
|
|
"StatPos": [stat_pos],
|
|
"StatNeg": [stat_neg]
|
|
},
|
|
attrs={
|
|
"curve": curve,
|
|
"num_thresholds": num_thresholds,
|
|
"slide_steps": 0
|
|
},
|
|
outputs={
|
|
"AUC": [auc_out],
|
|
"StatPosOut": [stat_pos],
|
|
"StatNegOut": [stat_neg]
|
|
})
|
|
return auc_out, batch_auc_out, [
|
|
batch_stat_pos, batch_stat_neg, stat_pos, stat_neg
|
|
]
|