You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/layers/metric_op.py

250 lines
9.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to metric.
"""
from __future__ import print_function
import warnings
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable, in_dygraph_mode, _varbase_creator
from .. import core
from ..param_attr import ParamAttr
from . import nn
from ..data_feeder import check_variable_and_dtype
__all__ = ['accuracy', 'auc']
def accuracy(input, label, k=1, correct=None, total=None):
"""
accuracy layer.
Refer to the https://en.wikipedia.org/wiki/Precision_and_recall
This function computes the accuracy using the input and label.
If the correct label occurs in top k predictions, then correct will increment by one.
Note: the dtype of accuracy is determined by input. the input and label dtype can be different.
Args:
input(Variable): The input of accuracy layer, which is the predictions of network. A LoDTensor or Tensor with type float32,float64.
The shape is ``[sample_number, class_dim]`` .
label(Variable): The label of dataset. LoDTensor or Tensor with type int32,int64. The shape is ``[sample_number, 1]`` .
k(int): The top k predictions for each class will be checked. Data type is int64 or int32.
correct(Variable): The correct predictions count. A Tensor with type int64 or int32.
total(Variable): The total entries count. A tensor with type int64 or int32.
Returns:
Variable: The correct rate. A Tensor with type float32.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
label = fluid.data(name="label", shape=[-1,1], dtype="int")
fc_out = fluid.layers.fc(input=data, size=10)
predict = fluid.layers.softmax(input=fc_out)
result = fluid.layers.accuracy(input=predict, label=label, k=5)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
x = np.random.rand(3, 32, 32).astype("float32")
y = np.array([[1],[0],[1]])
output= exe.run(feed={"input": x,"label": y},
fetch_list=[result[0]])
print(output)
#[array([0.6666667], dtype=float32)]
"""
if in_dygraph_mode():
if correct is None:
correct = _varbase_creator(dtype="int32")
if total is None:
total = _varbase_creator(dtype="int32")
topk_out, topk_indices = nn.topk(input, k=k)
_acc, _, _ = core.ops.accuracy(topk_out, topk_indices, label, correct,
total)
return _acc
helper = LayerHelper("accuracy", **locals())
check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
'accuracy')
topk_out, topk_indices = nn.topk(input, k=k)
acc_out = helper.create_variable_for_type_inference(dtype="float32")
if correct is None:
correct = helper.create_variable_for_type_inference(dtype="int32")
if total is None:
total = helper.create_variable_for_type_inference(dtype="int32")
helper.append_op(
type="accuracy",
inputs={
"Out": [topk_out],
"Indices": [topk_indices],
"Label": [label]
},
outputs={
"Accuracy": [acc_out],
"Correct": [correct],
"Total": [total],
})
return acc_out
def auc(input,
label,
curve='ROC',
num_thresholds=2**12 - 1,
topk=1,
slide_steps=1):
"""
**Area Under the Curve (AUC) Layer**
This implementation computes the AUC according to forward output and label.
It is used very widely in binary classification evaluation.
Note: If input label contains values other than 0 and 1, it will be cast
to `bool`. Find the relevant definitions `here <https://en.wikipedia.org\
/wiki/Receiver_operating_characteristic#Area_under_the_curve>`_.
There are two types of possible curves:
1. ROC: Receiver operating characteristic;
2. PR: Precision Recall
Args:
input(Variable): A floating-point 2D Variable, values are in the range
[0, 1]. Each row is sorted in descending order. This
input should be the output of topk. Typically, this
Variable indicates the probability of each label.
A LoDTensor or Tensor with type float32,float64.
label(Variable): A 2D int Variable indicating the label of the training
data. The height is batch size and width is always 1.
A LoDTensor or Tensor with type int32,int64.
curve(str): Curve type, can be 'ROC' or 'PR'. Default 'ROC'.
num_thresholds(int): The number of thresholds to use when discretizing
the roc curve. Default 200.
topk(int): only topk number of prediction output will be used for auc.
slide_steps: when calc batch auc, we can not only use step currently but the previous steps can be used. slide_steps=1 means use the current step, slide_steps=3 means use current step and the previous second steps, slide_steps=0 use all of the steps.
Returns:
Variable: A tuple representing the current AUC.
The return tuple is auc_out, batch_auc_out, [
batch_stat_pos, batch_stat_neg, stat_pos, stat_neg ]
Data type is Tensor, supporting float32, float64.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
data = fluid.data(name="input", shape=[-1, 32,32], dtype="float32")
label = fluid.data(name="label", shape=[-1], dtype="int")
fc_out = fluid.layers.fc(input=data, size=2)
predict = fluid.layers.softmax(input=fc_out)
result=fluid.layers.auc(input=predict, label=label)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
x = np.random.rand(3,32,32).astype("float32")
y = np.array([1,0,1])
output= exe.run(feed={"input": x,"label": y},
fetch_list=[result[0]])
print(output)
#[array([0.5])]
"""
helper = LayerHelper("auc", **locals())
auc_out = helper.create_variable_for_type_inference(dtype="float64")
batch_auc_out = helper.create_variable_for_type_inference(dtype="float64")
# make tp, tn, fp, fn persistable, so that can accumulate all batches.
# for batch auc
# we create slide_step+1 buckets, the first slide_steps buckets store
# historical batch-level values, and the last bucket stores the sum values of
# previous slide_step buckets.
# The index of bucket that the newest batch will use is determined by batch_id mod slide_steps,
# and batch_id is store in the last posision of following variable
batch_stat_pos = helper.create_global_variable(
persistable=True,
dtype='int64',
shape=[(1 + slide_steps) * (num_thresholds + 1) + 1])
batch_stat_neg = helper.create_global_variable(
persistable=True,
dtype='int64',
shape=[(1 + slide_steps) * (num_thresholds + 1) + 1])
# for global auc
# Needn't maintain the batch id
stat_pos = helper.create_global_variable(
persistable=True, dtype='int64', shape=[1, num_thresholds + 1])
stat_neg = helper.create_global_variable(
persistable=True, dtype='int64', shape=[1, num_thresholds + 1])
for var in [batch_stat_pos, batch_stat_neg, stat_pos, stat_neg]:
helper.set_variable_initializer(
var, Constant(
value=0.0, force_cpu=False))
# Batch AUC
helper.append_op(
type="auc",
inputs={
"Predict": [input],
"Label": [label],
"StatPos": [batch_stat_pos],
"StatNeg": [batch_stat_neg]
},
attrs={
"curve": curve,
"num_thresholds": num_thresholds,
"slide_steps": slide_steps
},
outputs={
"AUC": [batch_auc_out],
"StatPosOut": [batch_stat_pos],
"StatNegOut": [batch_stat_neg]
})
# Global AUC
helper.append_op(
type="auc",
inputs={
"Predict": [input],
"Label": [label],
"StatPos": [stat_pos],
"StatNeg": [stat_neg]
},
attrs={
"curve": curve,
"num_thresholds": num_thresholds,
"slide_steps": 0
},
outputs={
"AUC": [auc_out],
"StatPosOut": [stat_pos],
"StatNegOut": [stat_neg]
})
return auc_out, batch_auc_out, [
batch_stat_pos, batch_stat_neg, stat_pos, stat_neg
]