You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/param_attr.py

108 lines
3.7 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from initializer import Initializer, Xavier, Constant
from regularizer import WeightDecayRegularizer
__all__ = [
'ParamAttr',
'WeightNormParamAttr',
]
class ParamAttr(object):
def __init__(self,
name=None,
initializer=None,
learning_rate=1.0,
regularizer=None,
trainable=True,
gradient_clip=None,
do_model_average=None):
self.name = name
self.initializer = initializer
self.learning_rate = learning_rate
self.regularizer = regularizer
self.trainable = trainable
self.gradient_clip = gradient_clip
self.model_average = do_model_average
def set_default_initializer(self, initializer):
if initializer is None:
if self.initializer is None:
raise ValueError("ParamAttr.initializer is not set")
return
if self.initializer is not None:
return
self.initializer = initializer
def set_default_param_initializer(self):
self.set_default_initializer(Xavier())
def set_default_bias_initializer(self):
self.set_default_initializer(Constant(0.0))
@staticmethod
def to_attr(arg):
if arg is None:
return ParamAttr()
elif isinstance(arg, list) or isinstance(arg, tuple):
return [ParamAttr.to_attr(a) for a in arg]
elif isinstance(arg, ParamAttr):
return arg
elif isinstance(arg, str) or isinstance(arg, unicode):
return ParamAttr(name=arg)
elif isinstance(arg, Initializer):
return ParamAttr(initializer=arg)
elif isinstance(arg, WeightDecayRegularizer):
return ParamAttr(regularizer=arg)
elif isinstance(arg, bool):
return ParamAttr.to_attr(None) if arg else False
else:
raise TypeError("{0} cast to ParamAttr".format(type(arg)))
def to_kwargs(self, with_initializer=False):
kwargs = {
'name': self.name,
'optimize_attr': {
'learning_rate': self.learning_rate
},
'regularizer': self.regularizer,
'trainable': self.trainable,
'gradient_clip_attr': self.gradient_clip,
'model_average': self.model_average
}
if with_initializer:
kwargs['initializer'] = self.initializer
return kwargs
class WeightNormParamAttr(ParamAttr):
"""
Used for weight normalization. Any field in ParamAttr can also be set here.
Besides, an extra field dim can be set to indicate the dimension except
which to normalize.
"""
# List to record the parameters reparameterized by weight normalization.
# If these parameters are treated as Variable rather than Parameter,
# it can be used to discriminate these parameters and help to serialize
# these paramters for inference.
params_with_weight_norm = []
def __init__(self, dim=None, **kwargs):
super(WeightNormParamAttr, self).__init__(**kwargs)
self.dim = dim