You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
115 lines
4.1 KiB
115 lines
4.1 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/multiplex_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
class MultiplexOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContextBase* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Ids"), "Input(Ids) shouldn't be null.");
|
|
PADDLE_ENFORCE(!ctx->Inputs("X").empty(),
|
|
"MultiInput(X) shouldn't be empty.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
|
|
auto ids_dim = ctx->GetInputDim("Ids");
|
|
PADDLE_ENFORCE(
|
|
ids_dim.size() == 2 && ids_dim[1] == 1,
|
|
"The index tensor must be a vector with size batchSize x 1.");
|
|
|
|
auto ins_dims = ctx->GetInputsDim("X");
|
|
auto num_ins = ins_dims.size();
|
|
PADDLE_ENFORCE(num_ins > 1,
|
|
"multiplex operator should have more than "
|
|
"one candidate input tensors.");
|
|
|
|
auto in_dim = ins_dims[0];
|
|
PADDLE_ENFORCE(in_dim.size() >= 2,
|
|
"The rank of candidate tensors must be not less than 2.");
|
|
for (size_t i = 1; i < num_ins; i++) {
|
|
auto dim = ins_dims[i];
|
|
PADDLE_ENFORCE(in_dim == dim,
|
|
"All the candidate tensors must have the same size.");
|
|
}
|
|
ctx->SetOutputDim("Out", in_dim);
|
|
}
|
|
};
|
|
|
|
class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
MultiplexOpMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("Ids", "The index tensor of multiplex operator.");
|
|
AddInput("X", "The candidate tensors of multiplex operator.")
|
|
.AsDuplicable();
|
|
AddOutput("Out", "The output tensor of multiplex operator.");
|
|
AddComment(R"DOC(Multiplex operator
|
|
|
|
Multiplex multiple tensors according to the index provided by the index tensor.
|
|
|
|
Ids: the index tensor.
|
|
X[0 : N - 1]: the candidate tensors for output (N >= 2).
|
|
For each index i from 0 to batchSize - 1, the output is the i-th row of the
|
|
the (Ids[i])-th tensor.
|
|
|
|
For i-th row of the output tensor:
|
|
|
|
y[i] = x_{k}[i]
|
|
|
|
where y is the output tensor. `x_{k}` is the k-th input tensor
|
|
and `k = Ids[i]`.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class MultiplexGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContextBase* ctx) const override {
|
|
PADDLE_ENFORCE(!ctx->Inputs("X").empty(), "Input(X) should not be null.");
|
|
PADDLE_ENFORCE(!ctx->Outputs(framework::GradVarName("X")).empty(),
|
|
"Output(X@Grad) should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null.");
|
|
std::vector<framework::DDim> d_ins;
|
|
auto ins = ctx->GetInputsDim("X");
|
|
// No need to compute gradient for Input(Ids)
|
|
for (size_t i = 0; i < ins.size(); i++) {
|
|
d_ins.push_back(ins[i]);
|
|
}
|
|
ctx->SetOutputsDim(framework::GradVarName("X"), d_ins);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker, multiplex_grad,
|
|
ops::MultiplexGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
multiplex, ops::MultiplexCPUKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
multiplex_grad,
|
|
ops::MultiplexGradCPUKernel<paddle::platform::CPUPlace, float>);
|