You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/framework/io.py

292 lines
11 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import collections
import pickle
import six
import warnings
import paddle
# deprecated module import
from paddle import fluid
from paddle.fluid import core
from paddle.fluid.framework import Variable, _varbase_creator, _dygraph_tracer
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers, EXTRA_VAR_INFO_FILENAME
__all__ = [
'save',
'load',
]
def _build_saved_state_dict(state_dict):
save_dict = {}
name_table = {}
for key, value in state_dict.items():
if isinstance(value, (Variable, core.VarBase)):
save_dict[key] = value.numpy()
name_table[key] = value.name
else:
save_dict[key] = value
save_dict["StructuredToParameterName@@"] = name_table
return save_dict
def _load_state_dict_from_save_inference_model(model_path, config):
# 1. load program desc & construct _ProgramHolder
programs = _construct_program_holders(model_path, config.model_filename)
# 2. load layer parameters & buffers
with fluid.dygraph.guard():
persistable_var_dict = _construct_params_and_buffers(
model_path,
programs,
config.separate_params,
config.params_filename,
append_suffix=False)
# 3. construct state_dict
load_param_dict = dict()
for var_name in persistable_var_dict:
load_param_dict[var_name] = persistable_var_dict[var_name].numpy()
# if __variables.info__ exists, we can recover structured_name
var_info_path = os.path.join(model_path, EXTRA_VAR_INFO_FILENAME)
if os.path.exists(var_info_path):
with open(var_info_path, 'rb') as f:
extra_var_info = pickle.load(f)
structured_para_dict = dict()
for var_name in load_param_dict:
structured_name = extra_var_info[var_name].get(
'structured_name', None)
assert structured_name is not None, "Cannot find saved variable (%s)'s structured name in saved model." % var_name
structured_para_dict[structured_name] = load_param_dict[
var_name]
load_param_dict = structured_para_dict
return load_param_dict
def _load_state_dict_from_save_params(model_path):
# Try to load all the files in the directory in VarBase format,
# the file name is used as the name of VarBase
load_var_list = []
# 1. load file names
var_name_list = []
for root, _, files in os.walk(model_path):
for filename in files:
file_path = os.path.join(root, filename)
tmp_var_name = os.path.relpath(file_path, model_path)
var_name = tmp_var_name.replace("\\", "/")
var_name_list.append(var_name)
# 2. create and load VarBase
with fluid.dygraph.guard():
for name in var_name_list:
new_var = _varbase_creator(name=name, persistable=True)
_dygraph_tracer().trace_op(
type='load',
inputs={},
outputs={'Out': new_var},
attrs={'file_path': os.path.join(model_path, name)})
load_var_list.append(new_var)
# 3. construct state_dict
load_param_dict = dict()
for var in load_var_list:
load_param_dict[var.name] = var.numpy()
return load_param_dict
def save(obj, path):
'''
Save an object to the specified path.
.. note::
Now only supports save ``state_dict`` of Layer or Optimizer.
Args:
obj(Object) : The object to be saved.
path(str) : The path of the object to be saved.
If saved in the current directory, the input path string will be used as the file name.
Returns:
None
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
emb = paddle.nn.Embedding(10, 10)
layer_state_dict = emb.state_dict()
paddle.save(layer_state_dict, "emb.pdparams")
scheduler = paddle.optimizer.lr_scheduler.NoamLR(
d_model=0.01, warmup_steps=100, verbose=True)
adam = paddle.optimizer.Adam(
learning_rate=scheduler,
parameters=emb.parameters())
opt_state_dict = adam.state_dict()
paddle.save(opt_state_dict, "adam.pdopt")
'''
# 1. input check
if not isinstance(obj, dict):
raise NotImplementedError(
"Now only supports save state_dict of Layer or Optimizer, "
"expect dict, but received %s." % type(obj))
if len(obj) == 0:
warnings.warn("The input state dict is empty, no need to save.")
filename = os.path.basename(path)
if filename == "":
raise ValueError("The input path MUST be format of dirname/filename "
"[dirname\\filename in Windows system], but received "
"filename is empty string.")
# 2. save object
dirname = os.path.dirname(path)
if dirname and not os.path.exists(dirname):
os.makedirs(dirname)
# TODO(chenweihang): supports save other object
saved_obj = _build_saved_state_dict(obj)
with open(path, 'wb') as f:
pickle.dump(saved_obj, f, protocol=2)
def load(path, config=None):
'''
Load an object can be used in paddle from specified path.
.. note::
Now only supports load ``state_dict`` of Layer or Optimizer.
.. note::
``paddle.load`` supports loading ``state_dict`` from the result of several
paddle1.x save APIs in static mode, but due to some historical reasons,
if you load ``state_dict`` from the saved result of
``paddle.static.save_inference_model/paddle.fluid.io.save_params/paddle.fluid.io.save_persistables`` ,
the structured variable name will cannot be restored. You need to set the argument
``use_structured_name=False`` when using ``Layer.set_state_dict`` later.
Args:
path(str) : The path to load the target object. Generally, the path is the target
file path, when compatible with loading the saved results of
``paddle.jit.save/paddle.static.save_inference_model`` , the path is a directory.
config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig`
object that specifies additional configuration options, these options
are for compatibility with ``paddle.jit.save/paddle.static.save_inference_model``
formats. Default None.
Returns:
Object(Object): a target object can be used in paddle
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
emb = paddle.nn.Embedding(10, 10)
layer_state_dict = emb.state_dict()
paddle.save(layer_state_dict, "emb.pdparams")
scheduler = paddle.optimizer.lr_scheduler.NoamLR(
d_model=0.01, warmup_steps=100, verbose=True)
adam = paddle.optimizer.Adam(
learning_rate=scheduler,
parameters=emb.parameters())
opt_state_dict = adam.state_dict()
paddle.save(opt_state_dict, "adam.pdopt")
load_layer_state_dict = paddle.load("emb.pdparams")
load_opt_state_dict = paddle.load("adam.pdopt")
'''
# 1. input check
if not os.path.exists(path):
error_msg = "The path `%s` does not exist."
# if current path is a prefix, and the path.pdparams or path.pdopt
# is exist, users may want use `paddle.load` load the result of
# `fluid.save_dygraph`, we raise error here for users
params_file_path = path + ".pdparams"
opti_file_path = path + ".pdopt"
if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
error_msg += " If you want to load the results saved by `fluid.save_dygraph`, " \
"please specify the full file name, not just the file name prefix. For " \
"example, it should be written as `paddle.load('model.pdparams')` instead of " \
"`paddle.load('model')`."
raise ValueError(error_msg % path)
if config is None:
config = paddle.SaveLoadConfig()
# 2. load target
load_result = None
if os.path.isfile(path):
# we think path is file means this file is created by paddle.save
with open(path, 'rb') as f:
load_result = pickle.load(f) if six.PY2 else pickle.load(
f, encoding='latin1')
if not config.keep_name_table and "StructuredToParameterName@@" in load_result:
del load_result["StructuredToParameterName@@"]
elif os.path.isdir(path):
# we think path is directory means compatible with loading
# store results of static mode related save APIs
# check whether model file exists
if config.model_filename is None:
model_filename = '__model__'
else:
model_filename = config.model_filename
model_file_path = os.path.join(path, model_filename)
if os.path.exists(model_file_path):
# Load state dict by `jit.save/io.save_inference_model` save format
# NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
# The model saved by `save_inference_model` does not completely correspond to
# the information required by the `state_dict` under the dygraph.
# `save_inference_model` not save structured name, we need to remind
# the user to configure the `use_structured_name` argument when `set_state_dict`
# NOTE(chenweihang): `jit.save` doesn't save optimizer state
load_result = _load_state_dict_from_save_inference_model(path,
config)
else:
# load state dict by `io.save_params/persistables` save format
# TODO(chenweihang): [ Now only supports loading parameters seperately ]
# If users save all parameters as one file, the [ variable.name -> variable ]
# mapping info will lost, so users need to give variable list, but users build
# variable list in dygraph mode is difficult, we recommend users to use
# paddle.static.load_program_state in this case
load_result = _load_state_dict_from_save_params(path)
else:
raise ValueError(
"Unsupported path format, now only supports file or directory.")
return load_result