You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
5.5 KiB
137 lines
5.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#ifndef HL_MATRIX_STUB_H_
|
|
#define HL_MATRIX_STUB_H_
|
|
|
|
#include "hl_matrix.h"
|
|
|
|
inline void hl_matrix_add(real* A_d,
|
|
real* B_d,
|
|
real* C_d,
|
|
int dimM,
|
|
int dimN,
|
|
real alpha,
|
|
real beta) {}
|
|
|
|
inline void hl_matrix_softmax(real* A_d, real* C_d, int dimM, int dimN) {}
|
|
|
|
inline void hl_sequence_softmax_forward(real* A_d,
|
|
real* C_d,
|
|
const int* index,
|
|
int numSequence) {}
|
|
|
|
inline void hl_matrix_softmax_derivative(
|
|
real* grad_d, real* output_d, real* sftmaxSum_d, int dimM, int dimN) {}
|
|
|
|
inline void hl_matrix_classification_error(real* topVal,
|
|
int ldv,
|
|
int* topIds,
|
|
real* src,
|
|
int lds,
|
|
int dim,
|
|
int topkSize,
|
|
int numSamples,
|
|
int* label,
|
|
real* recResult) {}
|
|
|
|
inline void hl_matrix_cross_entropy(
|
|
real* A_d, real* C_d, int* label_d, int dimM, int dimN) {}
|
|
|
|
inline void hl_matrix_cross_entropy_bp(
|
|
real* grad_d, real* output_d, int* label_d, int dimM, int dimN) {}
|
|
|
|
inline void hl_matrix_multi_binary_cross_entropy(
|
|
real* output, real* entropy, hl_sparse_matrix_s mat, int dimM, int dimN) {}
|
|
|
|
inline void hl_matrix_multi_binary_cross_entropy_bp(
|
|
real* output, real* grad, hl_sparse_matrix_s mat, int dimM, int dimN) {}
|
|
|
|
inline void hl_matrix_zero_mem(real* data, int num) {}
|
|
|
|
inline void hl_param_relu_forward(real* output,
|
|
real* input,
|
|
real* w,
|
|
int width,
|
|
int height,
|
|
int partial_sum) {}
|
|
|
|
inline void hl_param_relu_backward_w(real* grad_w,
|
|
real* grad_o,
|
|
real* input,
|
|
int width,
|
|
int height,
|
|
int partial_sum) {}
|
|
|
|
inline void hl_param_relu_backward_diff(real* grad_o,
|
|
real* input,
|
|
real* w,
|
|
real* diff,
|
|
int width,
|
|
int height,
|
|
int partial_sum) {}
|
|
|
|
inline void hl_matrix_add_shared_bias(real* A_d,
|
|
real* B_d,
|
|
const int channel,
|
|
const int dimM,
|
|
const int dimN,
|
|
real scale) {}
|
|
|
|
inline void hl_matrix_collect_shared_bias(real* B_d,
|
|
real* A_d,
|
|
const int channel,
|
|
const int dimM,
|
|
const int dimN,
|
|
real scale) {}
|
|
|
|
inline void hl_matrix_rotate(
|
|
real* mat, real* matRot, int dimM, int dimN, bool clockWise) {}
|
|
|
|
inline void hl_matrix_vol2Col(const real* dataSrc,
|
|
int channels,
|
|
int depth,
|
|
int height,
|
|
int width,
|
|
int filterD,
|
|
int filterH,
|
|
int filterW,
|
|
int strideD,
|
|
int strideH,
|
|
int strideW,
|
|
int paddingD,
|
|
int paddingH,
|
|
int paddingW,
|
|
real* dataDst) {}
|
|
|
|
inline void hl_matrix_col2Vol(real* dataDst,
|
|
int channels,
|
|
int depth,
|
|
int height,
|
|
int width,
|
|
int filterD,
|
|
int filterH,
|
|
int filterW,
|
|
int strideD,
|
|
int strideH,
|
|
int strideW,
|
|
int paddingD,
|
|
int paddingH,
|
|
int paddingW,
|
|
const real* dataSrc,
|
|
real alpha,
|
|
real beta) {}
|
|
|
|
#endif // HL_MATRIX_STUB_H_
|