You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
159 lines
5.3 KiB
159 lines
5.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#ifdef PADDLE_WITH_TESTING
|
|
#include "gtest/gtest.h"
|
|
#endif
|
|
|
|
#include "paddle/framework/lod_tensor.h"
|
|
#include "paddle/framework/operator.h"
|
|
#include "paddle/framework/tensor_array.h"
|
|
#include "paddle/framework/variable.h"
|
|
#include "paddle/operators/rnn/recurrent_op_utils.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class DynamicRecurrentOp : public framework::OperatorBase {
|
|
public:
|
|
static const rnn::ArgumentName kArgName;
|
|
using value_type = float;
|
|
|
|
DynamicRecurrentOp(const std::string& type,
|
|
const framework::VariableNameMap& inputs,
|
|
const framework::VariableNameMap& outputs,
|
|
const framework::AttributeMap& attrs)
|
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
|
|
|
DynamicRecurrentOp(const DynamicRecurrentOp& o)
|
|
: framework::OperatorBase(
|
|
static_cast<const framework::OperatorBase&>(o)) {
|
|
// TODO(yuyang18): Implement copy ctor well.
|
|
PADDLE_THROW("Not implemented");
|
|
}
|
|
|
|
void Run(const framework::Scope& scope,
|
|
const platform::DeviceContext& dev_ctx) const override;
|
|
|
|
/*
|
|
* Split the inputs(LoDTensors) to segments for each time step.
|
|
*/
|
|
void SplitInputs() const;
|
|
|
|
/*
|
|
* Create step-scopes to store temporary outputs in each time steps.
|
|
*/
|
|
void CreateScopes() const;
|
|
|
|
/*
|
|
* Link TensorArray steps to the corresponding variables located in
|
|
* step-scopes.
|
|
*/
|
|
void WriteStepInputs() const;
|
|
|
|
/*
|
|
* Write output of each step to the corresponding TensorArray.
|
|
*/
|
|
void WriteStepOutputs() const;
|
|
|
|
/*
|
|
* Initialize the states, each state will have a corresponding pre-state,
|
|
* which share the memory with the state in the previous time state. The
|
|
* pre-state in the first time step will be initialized with an zero tensor or
|
|
* a tensor in parent scope if is provided.
|
|
*/
|
|
void InitStates() const;
|
|
|
|
/*
|
|
* Concatenate outputs in each time step and generate a LoDTensor.
|
|
*/
|
|
void ConcatOutputs() const;
|
|
|
|
/*
|
|
* set a stepnet that is created according to a RecurrentOp's stepnet.
|
|
*/
|
|
void SetStepNet(std::unique_ptr<OperatorBase> net) {
|
|
PADDLE_ENFORCE_NOT_NULL(net);
|
|
stepnet_ = std::move(net);
|
|
}
|
|
const OperatorBase& GetStepNet() const { return *stepnet_; }
|
|
|
|
protected:
|
|
struct ArgCache {
|
|
framework::Scope const* scope;
|
|
std::vector<framework::Scope*>* scopes;
|
|
std::map<std::string, framework::Variable*> inlinks;
|
|
std::map<std::string, framework::Variable*> outlinks;
|
|
|
|
size_t num_steps{0};
|
|
|
|
void Init(const rnn::ArgumentName& name, const OperatorBase& op,
|
|
const framework::Scope& scope, rnn::Argument* arg);
|
|
|
|
framework::Scope& GetScope(size_t index) {
|
|
PADDLE_ENFORCE_LT(index, num_steps);
|
|
return *scopes->at(index);
|
|
}
|
|
|
|
private:
|
|
void InitArgument(const rnn::ArgumentName& name, const OperatorBase& op,
|
|
rnn::Argument* arg);
|
|
void CacheScopes(const framework::Scope& scope, const rnn::Argument& arg);
|
|
void CacheInlinks(const framework::Scope& scope,
|
|
const std::vector<std::string>& names);
|
|
void CacheOutlinks(const framework::Scope& scope,
|
|
const std::vector<std::string>& names);
|
|
framework::Variable* GetVariable(const framework::Scope& scope,
|
|
const std::string& name);
|
|
};
|
|
|
|
private:
|
|
std::unique_ptr<OperatorBase> stepnet_;
|
|
mutable framework::TensorArray states_;
|
|
mutable std::map<std::string, framework::TensorArray> step_inputs_;
|
|
mutable std::map<std::string, framework::TensorArray> step_outputs_;
|
|
mutable std::map<std::string, std::vector<framework::DySeqMeta>>
|
|
dy_seq_metas_;
|
|
mutable rnn::Argument arg_;
|
|
mutable ArgCache cache_;
|
|
|
|
#ifdef PADDLE_WITH_TESTING
|
|
friend class DynamicRecurrentOpTestHelper;
|
|
FRIEND_TEST(DynamicRecurrentOpTestHelper, SplitInputs);
|
|
FRIEND_TEST(DynamicRecurrentOpTestHelper, CreateCache);
|
|
FRIEND_TEST(DynamicRecurrentOpTestHelper, CreateScopes);
|
|
FRIEND_TEST(DynamicRecurrentOpTestHelper, WriteStepInputs);
|
|
FRIEND_TEST(DynamicRecurrentOpTestHelper, WriteStepOutputs);
|
|
FRIEND_TEST(DynamicRecurrentOpTestHelper, InitStates);
|
|
FRIEND_TEST(DynamicRecurrentOpTestHelper, ConcatOutputs);
|
|
#endif
|
|
};
|
|
|
|
class DynamicRecurrentGradientOp : public framework::OperatorBase {
|
|
public:
|
|
DynamicRecurrentGradientOp(const std::string& type,
|
|
const framework::VariableNameMap& inputs,
|
|
const framework::VariableNameMap& outputs,
|
|
const framework::AttributeMap& attrs)
|
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
|
|
|
void Run(const framework::Scope& scope,
|
|
const platform::DeviceContext& dev_ctx) const override;
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|