You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
124 lines
4.6 KiB
124 lines
4.6 KiB
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/imperative/prepared_operator.h"
|
|
#include <sstream>
|
|
|
|
namespace paddle {
|
|
namespace imperative {
|
|
|
|
const framework::Tensor* GetTensorFromVar(const framework::Variable& var) {
|
|
if (var.IsType<framework::LoDTensor>()) {
|
|
return &(var.Get<framework::LoDTensor>());
|
|
} else if (var.IsType<framework::SelectedRows>()) {
|
|
return &(var.Get<framework::SelectedRows>().value());
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
void PreparedOp::PrepareData(
|
|
const platform::Place& place, const NameVarBaseMap& ins,
|
|
const framework::OperatorWithKernel& op,
|
|
const framework::OpKernelType& expected_kernel_key) {
|
|
for (const auto& name_pair : ins) {
|
|
for (const auto& var_base : name_pair.second) {
|
|
const auto* tensor = GetTensorFromVar(var_base->Var());
|
|
if (tensor && tensor->IsInitialized()) {
|
|
auto tmp_place = tensor->place();
|
|
// TODO(jiabin): Support transform data layout when we Verify it on more
|
|
// tests
|
|
if (!(tmp_place == place)) {
|
|
auto kernel_type_for_var = op.GetKernelTypeForVar(
|
|
name_pair.first, *tensor, expected_kernel_key);
|
|
if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
|
|
continue;
|
|
} else {
|
|
VLOG(3) << "Transform Variable " << var_base->Name() << " from "
|
|
<< kernel_type_for_var << " to " << expected_kernel_key;
|
|
framework::Tensor out;
|
|
TransformData(expected_kernel_key, kernel_type_for_var, *tensor,
|
|
&out);
|
|
SetTensorToVariable(var_base->Var(), out, var_base->MutableVar());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PreparedOp::PreparedOp(const framework::OperatorBase& op,
|
|
const framework::RuntimeContext& ctx,
|
|
framework::OperatorWithKernel::OpKernelFunc func,
|
|
platform::DeviceContext* dev_ctx,
|
|
std::vector<framework::KernelConfig>* kernel_configs)
|
|
: op_(op),
|
|
ctx_(ctx),
|
|
func_(std::move(func)),
|
|
dev_ctx_(dev_ctx),
|
|
kernel_configs_(kernel_configs) {}
|
|
|
|
PreparedOp PreparedOp::Prepare(const framework::RuntimeContext& ctx,
|
|
const framework::OperatorWithKernel& op,
|
|
platform::Place place,
|
|
const NameVarBaseMap& ins) {
|
|
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
|
|
auto* dev_ctx = pool.Get(place);
|
|
|
|
// check if op[type] has kernel registered.
|
|
auto& all_op_kernels = op.AllOpKernels();
|
|
auto kernels_iter = all_op_kernels.find(op.Type());
|
|
if (kernels_iter == all_op_kernels.end()) {
|
|
PADDLE_THROW(
|
|
"There are no kernels which are registered in the %s operator.",
|
|
op.Type());
|
|
}
|
|
|
|
auto& kernels = kernels_iter->second;
|
|
|
|
auto expected_kernel_key =
|
|
op.GetExpectedKernelType(framework::ExecutionContext(
|
|
op, framework::Scope(), *dev_ctx, ctx, nullptr));
|
|
VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
|
|
|
|
auto kernel_iter = kernels.find(expected_kernel_key);
|
|
// TODO(jiabin): Add operator.cc's line 1000 part back when we need that case
|
|
if (kernel_iter == kernels.end()) {
|
|
PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
|
|
KernelTypeToString(expected_kernel_key));
|
|
}
|
|
std::vector<framework::KernelConfig>* kernel_configs =
|
|
op.GetKernelConfig(expected_kernel_key);
|
|
|
|
if (!(expected_kernel_key.place_ == place)) {
|
|
dev_ctx = pool.Get(expected_kernel_key.place_);
|
|
place = dev_ctx->GetPlace();
|
|
}
|
|
|
|
PrepareData(place, ins, op, expected_kernel_key);
|
|
return PreparedOp(op, ctx, kernel_iter->second, dev_ctx, kernel_configs);
|
|
}
|
|
|
|
void PreparedOp::Run() {
|
|
// TODO(zjl): remove scope in dygraph
|
|
framework::Scope scope;
|
|
op_.RuntimeInferShape(scope, dev_ctx_->GetPlace(), ctx_);
|
|
VLOG(6) << "Finish Runtime infer shape";
|
|
func_(framework::ExecutionContext(op_, scope, *dev_ctx_, ctx_,
|
|
kernel_configs_));
|
|
}
|
|
|
|
} // namespace imperative
|
|
} // namespace paddle
|