You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
276 lines
10 KiB
276 lines
10 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import contextlib
|
|
import math
|
|
import sys
|
|
import numpy
|
|
import unittest
|
|
import os
|
|
import numpy as np
|
|
|
|
|
|
def resnet_cifar10(input, depth=32):
|
|
def conv_bn_layer(input,
|
|
ch_out,
|
|
filter_size,
|
|
stride,
|
|
padding,
|
|
act='relu',
|
|
bias_attr=False):
|
|
tmp = fluid.layers.conv2d(
|
|
input=input,
|
|
filter_size=filter_size,
|
|
num_filters=ch_out,
|
|
stride=stride,
|
|
padding=padding,
|
|
act=None,
|
|
bias_attr=bias_attr)
|
|
return fluid.layers.batch_norm(input=tmp, act=act)
|
|
|
|
def shortcut(input, ch_in, ch_out, stride):
|
|
if ch_in != ch_out:
|
|
return conv_bn_layer(input, ch_out, 1, stride, 0, None)
|
|
else:
|
|
return input
|
|
|
|
def basicblock(input, ch_in, ch_out, stride):
|
|
tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
|
|
tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None, bias_attr=True)
|
|
short = shortcut(input, ch_in, ch_out, stride)
|
|
return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')
|
|
|
|
def layer_warp(block_func, input, ch_in, ch_out, count, stride):
|
|
tmp = block_func(input, ch_in, ch_out, stride)
|
|
for i in range(1, count):
|
|
tmp = block_func(tmp, ch_out, ch_out, 1)
|
|
return tmp
|
|
|
|
assert (depth - 2) % 6 == 0
|
|
n = (depth - 2) // 6
|
|
conv1 = conv_bn_layer(
|
|
input=input, ch_out=16, filter_size=3, stride=1, padding=1)
|
|
res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
|
|
res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
|
|
res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
|
|
pool = fluid.layers.pool2d(
|
|
input=res3, pool_size=8, pool_type='avg', pool_stride=1)
|
|
return pool
|
|
|
|
|
|
def vgg16_bn_drop(input):
|
|
def conv_block(input, num_filter, groups, dropouts):
|
|
return fluid.nets.img_conv_group(
|
|
input=input,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
conv_num_filter=[num_filter] * groups,
|
|
conv_filter_size=3,
|
|
conv_act='relu',
|
|
conv_with_batchnorm=True,
|
|
conv_batchnorm_drop_rate=dropouts,
|
|
pool_type='max')
|
|
|
|
conv1 = conv_block(input, 64, 2, [0.3, 0])
|
|
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
|
|
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
|
|
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
|
|
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
|
|
|
|
drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
|
|
fc1 = fluid.layers.fc(input=drop, size=4096, act=None)
|
|
bn = fluid.layers.batch_norm(input=fc1, act='relu')
|
|
drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
|
|
fc2 = fluid.layers.fc(input=drop2, size=4096, act=None)
|
|
return fc2
|
|
|
|
|
|
def train(net_type, use_cuda, save_dirname, is_local):
|
|
classdim = 10
|
|
data_shape = [3, 32, 32]
|
|
|
|
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
if net_type == "vgg":
|
|
print("train vgg net")
|
|
net = vgg16_bn_drop(images)
|
|
elif net_type == "resnet":
|
|
print("train resnet")
|
|
net = resnet_cifar10(images, 32)
|
|
else:
|
|
raise ValueError("%s network is not supported" % net_type)
|
|
|
|
predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
avg_cost = fluid.layers.mean(cost)
|
|
acc = fluid.layers.accuracy(input=predict, label=label)
|
|
|
|
# Test program
|
|
test_program = fluid.default_main_program().clone(for_test=True)
|
|
|
|
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
|
|
optimizer.minimize(avg_cost)
|
|
|
|
BATCH_SIZE = 128
|
|
PASS_NUM = 1
|
|
|
|
train_reader = paddle.batch(
|
|
paddle.reader.shuffle(
|
|
paddle.dataset.cifar.train10(), buf_size=128 * 10),
|
|
batch_size=BATCH_SIZE)
|
|
|
|
test_reader = paddle.batch(
|
|
paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
|
|
|
|
def train_loop(main_program):
|
|
exe.run(fluid.default_startup_program())
|
|
loss = 0.0
|
|
for pass_id in range(PASS_NUM):
|
|
for batch_id, data in enumerate(train_reader()):
|
|
exe.run(main_program, feed=feeder.feed(data))
|
|
|
|
if (batch_id % 10) == 0:
|
|
acc_list = []
|
|
avg_loss_list = []
|
|
for tid, test_data in enumerate(test_reader()):
|
|
loss_t, acc_t = exe.run(program=test_program,
|
|
feed=feeder.feed(test_data),
|
|
fetch_list=[avg_cost, acc])
|
|
if math.isnan(float(loss_t)):
|
|
sys.exit("got NaN loss, training failed.")
|
|
acc_list.append(float(acc_t))
|
|
avg_loss_list.append(float(loss_t))
|
|
break # Use 1 segment for speeding up CI
|
|
|
|
acc_value = numpy.array(acc_list).mean()
|
|
avg_loss_value = numpy.array(avg_loss_list).mean()
|
|
|
|
print(
|
|
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
|
|
format(pass_id, batch_id + 1,
|
|
float(avg_loss_value), float(acc_value)))
|
|
|
|
if acc_value > 0.01: # Low threshold for speeding up CI
|
|
fluid.io.save_inference_model(save_dirname, ["pixel"],
|
|
[predict], exe)
|
|
return
|
|
|
|
if is_local:
|
|
train_loop(fluid.default_main_program())
|
|
else:
|
|
port = os.getenv("PADDLE_PSERVER_PORT", "6174")
|
|
pserver_ips = os.getenv("PADDLE_PSERVER_IPS") # ip,ip...
|
|
eplist = []
|
|
for ip in pserver_ips.split(","):
|
|
eplist.append(':'.join([ip, port]))
|
|
pserver_endpoints = ",".join(eplist) # ip:port,ip:port...
|
|
trainers = int(os.getenv("PADDLE_TRAINERS"))
|
|
current_endpoint = os.getenv("POD_IP") + ":" + port
|
|
trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
|
|
training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
|
|
t = fluid.DistributeTranspiler()
|
|
t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
|
|
if training_role == "PSERVER":
|
|
pserver_prog = t.get_pserver_program(current_endpoint)
|
|
pserver_startup = t.get_startup_program(current_endpoint,
|
|
pserver_prog)
|
|
exe.run(pserver_startup)
|
|
exe.run(pserver_prog)
|
|
elif training_role == "TRAINER":
|
|
train_loop(t.get_trainer_program())
|
|
|
|
|
|
def infer(use_cuda, save_dirname=None):
|
|
if save_dirname is None:
|
|
return
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
inference_scope = fluid.core.Scope()
|
|
with fluid.scope_guard(inference_scope):
|
|
# Use fluid.io.load_inference_model to obtain the inference program desc,
|
|
# the feed_target_names (the names of variables that will be feeded
|
|
# data using feed operators), and the fetch_targets (variables that
|
|
# we want to obtain data from using fetch operators).
|
|
[inference_program, feed_target_names,
|
|
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
|
|
|
|
# The input's dimension of conv should be 4-D or 5-D.
|
|
# Use normilized image pixels as input data, which should be in the range [0, 1.0].
|
|
batch_size = 1
|
|
tensor_img = numpy.random.rand(batch_size, 3, 32, 32).astype("float32")
|
|
|
|
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
|
|
# and results will contain a list of data corresponding to fetch_targets.
|
|
results = exe.run(inference_program,
|
|
feed={feed_target_names[0]: tensor_img},
|
|
fetch_list=fetch_targets)
|
|
|
|
print("infer results: ", results[0])
|
|
|
|
fluid.io.save_inference_model(save_dirname, feed_target_names,
|
|
fetch_targets, exe, inference_program)
|
|
|
|
|
|
def main(net_type, use_cuda, is_local=True):
|
|
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
|
return
|
|
|
|
# Directory for saving the trained model
|
|
save_dirname = "image_classification_" + net_type + ".inference.model"
|
|
|
|
train(net_type, use_cuda, save_dirname, is_local)
|
|
infer(use_cuda, save_dirname)
|
|
|
|
|
|
class TestImageClassification(unittest.TestCase):
|
|
def test_vgg_cuda(self):
|
|
with self.scope_prog_guard():
|
|
main('vgg', use_cuda=True)
|
|
|
|
def test_resnet_cuda(self):
|
|
with self.scope_prog_guard():
|
|
main('resnet', use_cuda=True)
|
|
|
|
def test_vgg_cpu(self):
|
|
with self.scope_prog_guard():
|
|
main('vgg', use_cuda=False)
|
|
|
|
def test_resnet_cpu(self):
|
|
with self.scope_prog_guard():
|
|
main('resnet', use_cuda=False)
|
|
|
|
@contextlib.contextmanager
|
|
def scope_prog_guard(self):
|
|
prog = fluid.Program()
|
|
startup_prog = fluid.Program()
|
|
scope = fluid.core.Scope()
|
|
with fluid.scope_guard(scope):
|
|
with fluid.program_guard(prog, startup_prog):
|
|
yield
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|