You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
5.6 KiB
130 lines
5.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <iostream>
|
|
#include "mkldnn.hpp"
|
|
#include "paddle/fluid/operators/softmax_op.h"
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using paddle::framework::Tensor;
|
|
using paddle::platform::MKLDNNDeviceContext;
|
|
using paddle::platform::MKLDNNMemDesc;
|
|
|
|
using mkldnn::memory; // Note: paddle has also "memory" namespace
|
|
using mkldnn::primitive;
|
|
using mkldnn::softmax_forward;
|
|
using mkldnn::prop_kind;
|
|
using mkldnn::stream;
|
|
|
|
template <typename T>
|
|
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
|
|
auto mkldnn_engine = dev_ctx.GetEngine();
|
|
const Tensor* input = ctx.Input<Tensor>("X");
|
|
Tensor* output = ctx.Output<Tensor>("Out");
|
|
PADDLE_ENFORCE(input->dims().size() == 2UL,
|
|
"The input of softmax op must be a 2D matrix.");
|
|
const T* input_data = input->data<T>();
|
|
// allocate memory for output
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
|
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
|
// MKL-DNN does support softmax over selected axis. Having 2D Tensor,
|
|
// we will make normalization after final eg. axis: 1
|
|
PADDLE_ENFORCE(((src_tz[0] == dst_tz[0]) && (src_tz[1] == dst_tz[1])),
|
|
"Softmax input and output dimensions should match");
|
|
// Same memory descriptor to be used for input and output
|
|
memory::dims softmax_tz = {src_tz[0], src_tz[1]};
|
|
// Generate keys for storing/retriving primitives for this operator
|
|
// TODO(jczaja): Each MKLDNN operator may have diffrent hashing function
|
|
auto gethash = [](memory::dims& operand_dims) {
|
|
return std::string(std::to_string(operand_dims[0]) + "-" +
|
|
std::to_string(operand_dims[1]));
|
|
};
|
|
const std::string key = gethash(softmax_tz);
|
|
const std::string key_softmax_p = key + "@softmax_p";
|
|
const std::string key_softmax_src_mem_p = key + "@softmax_src_mem_p";
|
|
const std::string key_softmax_dst_mem_p = key + "@softmax_dst_mem_p";
|
|
|
|
std::shared_ptr<void> softmax_p = dev_ctx.GetBlob(key_softmax_p);
|
|
if (softmax_p == nullptr) {
|
|
// Currently only NC data format is supported
|
|
auto softmax_md =
|
|
MKLDNNMemDesc({softmax_tz}, memory::f32, memory::format::nc);
|
|
// Normalization is made after innermost dimension eg. C out of NC
|
|
auto softmax_desc = softmax_forward::desc(prop_kind::forward_scoring,
|
|
softmax_md, 1 /*dim: C*/);
|
|
// create memory primitives
|
|
auto softmax_src_memory_p = std::make_shared<memory>(
|
|
memory::primitive_desc{softmax_md, mkldnn_engine},
|
|
static_cast<void*>(const_cast<T*>(input_data)));
|
|
dev_ctx.SetBlob(key_softmax_src_mem_p, softmax_src_memory_p);
|
|
auto softmax_dst_memory_p = std::make_shared<memory>(
|
|
memory::primitive_desc{softmax_md, mkldnn_engine},
|
|
static_cast<void*>(output_data));
|
|
dev_ctx.SetBlob(key_softmax_dst_mem_p, softmax_dst_memory_p);
|
|
|
|
auto softmax_forward_pd =
|
|
std::make_shared<softmax_forward::primitive_desc>(softmax_desc,
|
|
mkldnn_engine);
|
|
softmax_p = std::make_shared<softmax_forward>(
|
|
*(softmax_forward_pd.get()),
|
|
*(static_cast<memory*>(softmax_src_memory_p.get())),
|
|
*(static_cast<memory*>(softmax_dst_memory_p.get())));
|
|
dev_ctx.SetBlob(key_softmax_p, softmax_p);
|
|
} else {
|
|
// Primitives already exist
|
|
auto src_memory_p = std::static_pointer_cast<memory>(
|
|
dev_ctx.GetBlob(key_softmax_src_mem_p));
|
|
PADDLE_ENFORCE(src_memory_p != nullptr,
|
|
"Fail to find softmax src mem_p in device context");
|
|
auto dst_memory_p = std::static_pointer_cast<memory>(
|
|
dev_ctx.GetBlob(key_softmax_dst_mem_p));
|
|
PADDLE_ENFORCE(dst_memory_p != nullptr,
|
|
"Fail to find softmax dst mem_p in device context");
|
|
src_memory_p->set_data_handle(
|
|
reinterpret_cast<void*>(const_cast<T*>(input_data)));
|
|
dst_memory_p->set_data_handle(output_data);
|
|
}
|
|
|
|
std::vector<primitive> pipeline{
|
|
*(static_cast<softmax_forward::primitive*>(softmax_p.get()))};
|
|
stream(stream::kind::eager).submit(pipeline).wait();
|
|
|
|
const bool is_test = ctx.Attr<bool>("is_test");
|
|
if (!is_test) {
|
|
T threshold = exp(-64);
|
|
for (int i = 0; i < dst_tz[0] * dst_tz[1]; ++i) {
|
|
output_data[i] =
|
|
output_data[i] < threshold ? threshold : output_data[i];
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::SoftmaxMKLDNNKernel<float>);
|