You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
237 lines
9.2 KiB
237 lines
9.2 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
|
|
using namespace framework; // NOLINT
|
|
|
|
struct DataRecord {
|
|
std::vector<std::vector<std::vector<float>>> link_step_data_all;
|
|
std::vector<std::vector<float>> week_data_all, minute_data_all;
|
|
std::vector<size_t> lod1, lod2, lod3;
|
|
std::vector<std::vector<float>> rnn_link_data, rnn_week_datas,
|
|
rnn_minute_datas;
|
|
size_t batch_iter{0};
|
|
size_t batch_size{1};
|
|
DataRecord() = default;
|
|
explicit DataRecord(const std::string &path, int batch_size = 1)
|
|
: batch_size(batch_size) {
|
|
Load(path);
|
|
}
|
|
DataRecord NextBatch() {
|
|
DataRecord data;
|
|
size_t batch_end = batch_iter + batch_size;
|
|
// NOTE skip the final batch, if no enough data is provided.
|
|
if (batch_end <= link_step_data_all.size()) {
|
|
data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
|
|
link_step_data_all.begin() + batch_end);
|
|
data.week_data_all.assign(week_data_all.begin() + batch_iter,
|
|
week_data_all.begin() + batch_end);
|
|
data.minute_data_all.assign(minute_data_all.begin() + batch_iter,
|
|
minute_data_all.begin() + batch_end);
|
|
// Prepare LoDs
|
|
data.lod1.push_back(0);
|
|
data.lod2.push_back(0);
|
|
data.lod3.push_back(0);
|
|
CHECK(!data.link_step_data_all.empty()) << "empty";
|
|
CHECK(!data.week_data_all.empty());
|
|
CHECK(!data.minute_data_all.empty());
|
|
CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size());
|
|
CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size());
|
|
for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
|
|
for (const auto &d : data.link_step_data_all[j]) {
|
|
data.rnn_link_data.push_back(d);
|
|
}
|
|
data.rnn_week_datas.push_back(data.week_data_all[j]);
|
|
data.rnn_minute_datas.push_back(data.minute_data_all[j]);
|
|
// calculate lod
|
|
data.lod1.push_back(data.lod1.back() +
|
|
data.link_step_data_all[j].size());
|
|
data.lod3.push_back(data.lod3.back() + 1);
|
|
for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) {
|
|
data.lod2.push_back(data.lod2.back() +
|
|
data.link_step_data_all[j].size());
|
|
}
|
|
}
|
|
}
|
|
batch_iter += batch_size;
|
|
return data;
|
|
}
|
|
void Load(const std::string &path) {
|
|
std::ifstream file(path);
|
|
std::string line;
|
|
int num_lines = 0;
|
|
while (std::getline(file, line)) {
|
|
num_lines++;
|
|
std::vector<std::string> data;
|
|
split(line, ':', &data);
|
|
std::vector<std::vector<float>> link_step_data;
|
|
std::vector<std::string> link_datas;
|
|
split(data[0], '|', &link_datas);
|
|
for (auto &step_data : link_datas) {
|
|
std::vector<float> tmp;
|
|
split_to_float(step_data, ',', &tmp);
|
|
link_step_data.push_back(tmp);
|
|
}
|
|
// load week data
|
|
std::vector<float> week_data;
|
|
split_to_float(data[2], ',', &week_data);
|
|
// load minute data
|
|
std::vector<float> minute_data;
|
|
split_to_float(data[1], ',', &minute_data);
|
|
link_step_data_all.push_back(std::move(link_step_data));
|
|
week_data_all.push_back(std::move(week_data));
|
|
minute_data_all.push_back(std::move(minute_data));
|
|
}
|
|
}
|
|
};
|
|
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
|
|
int batch_size) {
|
|
PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor,
|
|
week_tensor, minute_tensor;
|
|
lod_attention_tensor.name = "data_lod_attention";
|
|
init_zero_tensor.name = "cell_init";
|
|
lod_tensor_tensor.name = "data";
|
|
week_tensor.name = "week";
|
|
minute_tensor.name = "minute";
|
|
auto one_batch = data->NextBatch();
|
|
std::vector<int> rnn_link_data_shape(
|
|
{static_cast<int>(one_batch.rnn_link_data.size()),
|
|
static_cast<int>(one_batch.rnn_link_data.front().size())});
|
|
lod_attention_tensor.shape.assign({1, 2});
|
|
lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2});
|
|
init_zero_tensor.shape.assign({batch_size, 15});
|
|
init_zero_tensor.lod.assign({one_batch.lod3});
|
|
lod_tensor_tensor.shape = rnn_link_data_shape;
|
|
lod_tensor_tensor.lod.assign({one_batch.lod1});
|
|
// clang-format off
|
|
week_tensor.shape.assign(
|
|
{static_cast<int>(one_batch.rnn_week_datas.size()),
|
|
static_cast<int>(one_batch.rnn_week_datas.front().size())});
|
|
week_tensor.lod.assign({one_batch.lod3});
|
|
minute_tensor.shape.assign(
|
|
{static_cast<int>(one_batch.rnn_minute_datas.size()),
|
|
static_cast<int>(one_batch.rnn_minute_datas.front().size())});
|
|
minute_tensor.lod.assign({one_batch.lod3});
|
|
// clang-format on
|
|
// assign data
|
|
TensorAssignData<float>(&lod_attention_tensor,
|
|
std::vector<std::vector<float>>({{0, 0}}));
|
|
std::vector<float> tmp_zeros(batch_size * 15, 0.);
|
|
TensorAssignData<float>(&init_zero_tensor, {tmp_zeros});
|
|
TensorAssignData<float>(&lod_tensor_tensor, one_batch.rnn_link_data);
|
|
TensorAssignData<float>(&week_tensor, one_batch.rnn_week_datas);
|
|
TensorAssignData<float>(&minute_tensor, one_batch.rnn_minute_datas);
|
|
// Set inputs.
|
|
auto init_zero_tensor1 = init_zero_tensor;
|
|
init_zero_tensor1.name = "hidden_init";
|
|
input_slots->assign({week_tensor, init_zero_tensor, minute_tensor,
|
|
init_zero_tensor1, lod_attention_tensor,
|
|
lod_tensor_tensor});
|
|
for (auto &tensor : *input_slots) {
|
|
tensor.dtype = PaddleDType::FLOAT32;
|
|
}
|
|
}
|
|
|
|
// Test with a really complicate model.
|
|
void TestRNN1Prediction(bool use_analysis, bool activate_ir, int num_threads) {
|
|
AnalysisConfig config;
|
|
config.prog_file = FLAGS_infer_model + "/__model__";
|
|
config.param_file = FLAGS_infer_model + "/param";
|
|
config.use_gpu = false;
|
|
config.device = 0;
|
|
config.specify_input_name = true;
|
|
config.enable_ir_optim = activate_ir;
|
|
PADDLE_ENFORCE(config.ir_mode ==
|
|
AnalysisConfig::IrPassMode::kExclude); // default
|
|
config.ir_passes.clear(); // Do not exclude any pass.
|
|
|
|
int batch_size = FLAGS_batch_size;
|
|
|
|
auto base_predictor =
|
|
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
|
|
auto predictor =
|
|
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
|
|
config);
|
|
std::vector<PaddleTensor> input_slots;
|
|
DataRecord data(FLAGS_infer_data, batch_size);
|
|
// Prepare inputs.
|
|
PrepareInputs(&input_slots, &data, batch_size);
|
|
std::vector<PaddleTensor> outputs, base_outputs;
|
|
|
|
base_predictor->Run(input_slots, &base_outputs);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
input_slots_all.emplace_back(input_slots);
|
|
if (num_threads == 1) {
|
|
TestOneThreadPrediction(config, input_slots_all, &outputs);
|
|
CompareResult(outputs, base_outputs);
|
|
} else {
|
|
// only return the output of first thread
|
|
TestMultiThreadPrediction(config, input_slots_all, &outputs, num_threads);
|
|
}
|
|
|
|
if (use_analysis && activate_ir) {
|
|
AnalysisPredictor *analysis_predictor =
|
|
dynamic_cast<AnalysisPredictor *>(predictor.get());
|
|
auto &fuse_statis = analysis_predictor->analysis_argument()
|
|
.Get<std::unordered_map<std::string, int>>(
|
|
framework::ir::kFuseStatisAttr);
|
|
for (auto &item : fuse_statis) {
|
|
LOG(INFO) << "fused " << item.first << " " << item.second;
|
|
}
|
|
|
|
int num_ops = 0;
|
|
for (auto &node :
|
|
analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
|
|
if (node->IsFunction()) {
|
|
++num_ops;
|
|
}
|
|
}
|
|
LOG(INFO) << "has num ops: " << num_ops;
|
|
|
|
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
|
|
EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
|
|
EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2); // bi-directional LSTM
|
|
EXPECT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1);
|
|
EXPECT_EQ(num_ops,
|
|
13); // After graph optimization, only 13 operators exists.
|
|
}
|
|
}
|
|
|
|
// Inference with analysis and IR, easy for profiling independently.
|
|
TEST(Analyzer, rnn1) { TestRNN1Prediction(true, true, FLAGS_num_threads); }
|
|
|
|
// Other unit-tests of RNN1, test different options of use_analysis,
|
|
// activate_ir and multi-threads.
|
|
TEST(Analyzer, RNN_tests) {
|
|
int num_threads[2] = {1, 4};
|
|
for (auto i : num_threads) {
|
|
// Directly infer with the original model.
|
|
TestRNN1Prediction(false, false, i);
|
|
// Inference with the original model with the analysis turned on, the
|
|
// analysis module will transform the program to a data flow graph.
|
|
TestRNN1Prediction(true, false, i);
|
|
// Inference with analysis and IR. The IR module will fuse some large
|
|
// kernels.
|
|
TestRNN1Prediction(true, true, i);
|
|
}
|
|
}
|
|
|
|
} // namespace inference
|
|
} // namespace paddle
|