You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
6.6 KiB
184 lines
6.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <Python.h>
|
|
#include <fstream>
|
|
#include <vector>
|
|
|
|
#include "paddle/framework/net.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/framework/operator.h"
|
|
#include "paddle/framework/scope.h"
|
|
#include "paddle/platform/place.h"
|
|
#include "paddle/pybind/tensor_bind.h"
|
|
#include "pybind11/numpy.h"
|
|
#include "pybind11/pybind11.h"
|
|
#include "pybind11/stl.h"
|
|
|
|
namespace py = pybind11;
|
|
namespace pd = paddle::framework;
|
|
|
|
USE_OP(add_two);
|
|
USE_OP(onehot_cross_entropy);
|
|
USE_OP_WITHOUT_KERNEL(fc);
|
|
USE_OP(sgd);
|
|
USE_OP(mul);
|
|
USE_OP(sigmoid);
|
|
USE_OP(softmax);
|
|
USE_OP(rowwise_add);
|
|
|
|
template <typename ClassType>
|
|
void ExposeOperator(ClassType& m) {
|
|
m.def("infer_shape", &ClassType::type::InferShape)
|
|
.def("run", &ClassType::type::Run)
|
|
.def("outputs",
|
|
[](const typename ClassType::type& op) -> std::vector<std::string> {
|
|
return op.outputs_;
|
|
})
|
|
.def("__str__", &ClassType::type::DebugString);
|
|
}
|
|
|
|
PYBIND11_PLUGIN(core) {
|
|
py::module m("core", "C++ core of PaddlePaddle");
|
|
|
|
py::class_<pd::Tensor>(m, "Tensor", py::buffer_protocol())
|
|
.def_buffer([](pd::Tensor& self) -> py::buffer_info {
|
|
return paddle::pybind::CastToPyBuffer(self);
|
|
})
|
|
.def("get_dims",
|
|
[](const pd::Tensor& self) { return pd::vectorize(self.dims()); })
|
|
.def("set_dims",
|
|
[](pd::Tensor& self, const std::vector<int>& dim) {
|
|
self.Resize(pd::make_ddim(dim));
|
|
})
|
|
.def("alloc_float",
|
|
[](pd::Tensor& self, paddle::platform::Place& place) {
|
|
self.mutable_data<float>(place);
|
|
})
|
|
.def("alloc_float",
|
|
[](pd::Tensor& self) {
|
|
self.mutable_data<float>(paddle::platform::CPUPlace());
|
|
})
|
|
.def("alloc_int",
|
|
[](pd::Tensor& self, paddle::platform::Place& place) {
|
|
self.mutable_data<int>(place);
|
|
})
|
|
.def("alloc_int",
|
|
[](pd::Tensor& self) {
|
|
self.mutable_data<int>(paddle::platform::CPUPlace());
|
|
})
|
|
.def("set", paddle::pybind::PyTensorSetFromArray<float>)
|
|
.def("set", paddle::pybind::PyTensorSetFromArray<int>)
|
|
.def("shape",
|
|
[](pd::Tensor& self) { return pd::vectorize(self.dims()); });
|
|
|
|
py::class_<pd::Variable>(m, "Variable", R"DOC(Variable Class.
|
|
|
|
All parameter, weight, gradient are variables in Paddle.
|
|
)DOC")
|
|
.def("is_int", [](const pd::Variable& var) { return var.IsType<int>(); })
|
|
.def("set_int",
|
|
[](pd::Variable& var, int val) -> void {
|
|
*var.GetMutable<int>() = val;
|
|
})
|
|
.def("get_int",
|
|
[](const pd::Variable& var) -> int { return var.Get<int>(); })
|
|
.def("get_tensor",
|
|
[](pd::Variable& self) -> pd::Tensor* {
|
|
return self.GetMutable<pd::Tensor>();
|
|
},
|
|
py::return_value_policy::reference);
|
|
|
|
py::class_<pd::Scope, std::shared_ptr<pd::Scope>>(m, "Scope")
|
|
.def(py::init<const std::shared_ptr<pd::Scope>&>())
|
|
.def("get_var",
|
|
&pd::Scope::GetVariable,
|
|
py::return_value_policy::reference)
|
|
.def("create_var",
|
|
&pd::Scope::CreateVariable,
|
|
py::return_value_policy::reference);
|
|
|
|
//! @note: Be careful! PyBind will return std::string as an unicode, not
|
|
//! Python str. If you want a str object, you should cast them in Python.
|
|
m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
|
|
auto& protos = pd::OpRegistry::protos();
|
|
std::vector<py::bytes> ret_values;
|
|
for (auto it = protos.begin(); it != protos.end(); ++it) {
|
|
PADDLE_ENFORCE(it->second.IsInitialized(),
|
|
"OpProto must all be initialized");
|
|
std::string str;
|
|
PADDLE_ENFORCE(it->second.SerializeToString(&str),
|
|
"Serialize OpProto Error. This could be a bug of Paddle.");
|
|
ret_values.push_back(py::bytes(str));
|
|
}
|
|
return ret_values;
|
|
});
|
|
m.def_submodule(
|
|
"var_names",
|
|
"The module will return special predefined variable name in Paddle")
|
|
.def("empty", pd::OperatorBase::EMPTY_VAR_NAME)
|
|
.def("temp", pd::OperatorBase::TMP_VAR_NAME);
|
|
|
|
py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
|
|
.def_static(
|
|
"create",
|
|
[](paddle::platform::Place) -> paddle::platform::DeviceContext* {
|
|
if (paddle::platform::is_gpu_place(place)) {
|
|
return new paddle::platform::GPUDeviceContext(place);
|
|
} else if (paddle::platform::is_cpu_place(place)) {
|
|
return new paddle::platform::CPUDeviceContext();
|
|
}
|
|
});
|
|
|
|
py::class_<paddle::platform::Place>(m, "GPUPlace").def(py::init<int>());
|
|
.def(py::init<>());
|
|
|
|
py::class_<paddle::platform::Place>(m, "CPUPlace").def(py::init<>());
|
|
|
|
py::class_<pd::OperatorBase, std::shared_ptr<pd::OperatorBase>> operator_base(
|
|
m, "Operator");
|
|
|
|
operator_base.def_static("create", [](py::bytes protobin) {
|
|
pd::OpDesc desc;
|
|
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
|
|
"Cannot parse user input to OpDesc");
|
|
PADDLE_ENFORCE(desc.IsInitialized(),
|
|
"User OpDesc is not initialized, reason %s",
|
|
desc.InitializationErrorString());
|
|
return pd::OpRegistry::CreateOp(desc);
|
|
});
|
|
ExposeOperator(operator_base);
|
|
|
|
using PlainNetPtr = std::shared_ptr<pd::PlainNet>;
|
|
py::class_<pd::PlainNet, PlainNetPtr> plain_net(m, "PlainNet");
|
|
|
|
plain_net
|
|
.def_static("create",
|
|
[]() -> std::shared_ptr<pd::PlainNet> {
|
|
auto retv = std::make_shared<pd::PlainNet>();
|
|
retv->type_ = "plain_net";
|
|
return retv;
|
|
})
|
|
.def("add_op", &pd::PlainNet::AddOp)
|
|
.def("add_op",
|
|
[](PlainNetPtr& self, const PlainNetPtr& plain_net) -> void {
|
|
self->AddOp(std::static_pointer_cast<pd::OperatorBase>(plain_net));
|
|
})
|
|
.def("complete_add_op", &pd::PlainNet::CompleteAddOp)
|
|
.def("complete_add_op", [](PlainNetPtr& self) { self->CompleteAddOp(); });
|
|
ExposeOperator(plain_net);
|
|
|
|
return m.ptr();
|
|
}
|