You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							95 lines
						
					
					
						
							3.8 KiB
						
					
					
				
			
		
		
	
	
							95 lines
						
					
					
						
							3.8 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
#include "paddle/fluid/operators/optimizers/lars_momentum_op.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
template <typename T>
 | 
						|
__global__ void MomentumLarsKernel(const T* p, const T* g, const T* v,
 | 
						|
                                   const T* learning_rate, const T mu,
 | 
						|
                                   const int64_t num, const T lars_coeff,
 | 
						|
                                   const T lars_weight_decay, const T* p_norm,
 | 
						|
                                   const T* g_norm, T* p_out, T* v_out) {
 | 
						|
  T lr = learning_rate[0];
 | 
						|
  T local_lr = learning_rate[0];
 | 
						|
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num;
 | 
						|
       i += blockDim.x * gridDim.x) {
 | 
						|
    if (p_norm[0] > 0 && g_norm[0] > 0) {
 | 
						|
      local_lr = lr * lars_coeff * p_norm[0] /
 | 
						|
                 (g_norm[0] + lars_weight_decay * p_norm[0]);
 | 
						|
    }
 | 
						|
    T v_new = v[i] * mu + local_lr * (g[i] + lars_weight_decay * p[i]);
 | 
						|
    v_out[i] = v_new;
 | 
						|
    p_out[i] = p[i] - v_new;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class LarsMomentumOpCUDAKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    auto param_out = ctx.Output<framework::LoDTensor>("ParamOut");
 | 
						|
    auto velocity_out = ctx.Output<framework::LoDTensor>("VelocityOut");
 | 
						|
    auto param = ctx.Input<framework::LoDTensor>("Param");
 | 
						|
    auto velocity = ctx.Input<framework::LoDTensor>("Velocity");
 | 
						|
    auto grad = ctx.Input<framework::LoDTensor>("Grad");
 | 
						|
    auto learning_rate = ctx.Input<framework::LoDTensor>("LearningRate");
 | 
						|
 | 
						|
    T* p_out = param_out->mutable_data<T>(ctx.GetPlace());
 | 
						|
    T* v_out = velocity_out->mutable_data<T>(ctx.GetPlace());
 | 
						|
 | 
						|
    T mu = static_cast<T>(ctx.Attr<float>("mu"));
 | 
						|
    T lars_coeff = ctx.Attr<float>("lars_coeff");
 | 
						|
    T lars_weight_decay = ctx.Attr<float>("lars_weight_decay");
 | 
						|
 | 
						|
    auto* p = param->data<T>();
 | 
						|
    auto* v = velocity->data<T>();
 | 
						|
    auto* g = grad->data<T>();
 | 
						|
    auto* lr = learning_rate->data<T>();
 | 
						|
 | 
						|
    int block = 512;
 | 
						|
    int grid = (param->numel() + block - 1) / block;
 | 
						|
 | 
						|
    auto eigen_p = framework::EigenVector<T>::Flatten(*param);
 | 
						|
    auto eigen_g = framework::EigenVector<T>::Flatten(*grad);
 | 
						|
    // calculate norms using eigein and launch the kernel.
 | 
						|
    framework::Tensor p_norm_t, g_norm_t;
 | 
						|
    p_norm_t.Resize({1});
 | 
						|
    g_norm_t.Resize({1});
 | 
						|
    auto* p_norm_data = p_norm_t.mutable_data<T>(ctx.GetPlace());
 | 
						|
    auto* g_norm_data = g_norm_t.mutable_data<T>(ctx.GetPlace());
 | 
						|
    auto ep_norm = framework::EigenScalar<T>::From(p_norm_t);
 | 
						|
    auto eg_norm = framework::EigenScalar<T>::From(g_norm_t);
 | 
						|
 | 
						|
    auto* place = ctx.template device_context<DeviceContext>().eigen_device();
 | 
						|
    ep_norm.device(*place) = eigen_p.square().sum().sqrt();
 | 
						|
    eg_norm.device(*place) = eigen_g.square().sum().sqrt();
 | 
						|
    MomentumLarsKernel<<<grid, block, 0, ctx.cuda_device_context().stream()>>>(
 | 
						|
        p, g, v, lr, mu, param->numel(), lars_coeff, lars_weight_decay,
 | 
						|
        p_norm_data, g_norm_data, p_out, v_out);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OP_CUDA_KERNEL(
 | 
						|
    lars_momentum,
 | 
						|
    ops::LarsMomentumOpCUDAKernel<paddle::platform::CUDADeviceContext, float>,
 | 
						|
    ops::LarsMomentumOpCUDAKernel<paddle::platform::CUDADeviceContext, double>);
 |