You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dygraph/jit.py

463 lines
16 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
__all__ = ['TracedLayer', 'declarative', 'dygraph_to_static_func']
import warnings
from paddle.fluid import core
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
from paddle.fluid.framework import Program, Block, Variable, _dygraph_tracer, dygraph_only, _dygraph_guard, _current_expected_place, in_dygraph_mode
from paddle.fluid.wrapped_decorator import wrap_decorator
def create_program_from_desc(program_desc):
program = Program()
program.desc = program_desc
program.blocks = [Block(program, 0)]
program._sync_with_cpp()
return program
def _extract_vars(inputs, result_list):
if isinstance(inputs, Variable):
result_list.append(inputs)
if isinstance(inputs, (list, tuple)):
for var in inputs:
_extract_vars(var, result_list)
def extract_vars(inputs):
result_list = []
_extract_vars(inputs, result_list)
return result_list
def _dygraph_to_static_func_(dygraph_func):
"""
Converts imperative dygraph APIs into declarative function APIs. Decorator
@dygraph_to_static_func only converts imperative dygraph APIs into
declarative net-building APIs, which means it doesn't return immediate
digital result as imperative mode. Users should handle Program and Executor
by themselves.
Note:
This decorator is NOT our recommended way to transform imperative function
to declarative function. We will remove this decorator after we finalize
cleaning up code.
Args:
dygraph_func (callable): callable imperative function.
Returns:
Callable: converting imperative dygraph APIs into declarative
net-building APIs.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
from paddle.fluid.dygraph.jit import dygraph_to_static_func
@dygraph_to_static_func
def func(x):
if fluid.layers.mean(x) < 0:
x_v = x - 1
else:
x_v = x + 1
return x_v
x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')
x_v = func(x)
exe = fluid.Executor(fluid.CPUPlace())
out = exe.run(fetch_list=[x_v])
print(out[0])
# [[1. 1. 1.]
# [1. 1. 1.]
# [1. 1. 1.]]
"""
# TODO: remove this decorator after we finalize training API
def __impl__(*args, **kwargs):
program_translator = ProgramTranslator()
if in_dygraph_mode() or not program_translator.enable_declarative:
warnings.warn(
"The decorator 'dygraph_to_static_func' doesn't work in "
"dygraph mode or set ProgramTranslator.enable to False. "
"We will just return dygraph output.")
return dygraph_func(*args, **kwargs)
static_func = program_translator.get_func(dygraph_func)
return static_func(*args, **kwargs)
return __impl__
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
def _declarative_(dygraph_func):
"""
Converts imperative dygraph APIs into declarative function APIs. Decorator
@declarative handles the Program and Executor of static mode and returns
the result as a dygraph VarBase.
Args:
dygraph_func (callable): callable imperative function.
Returns:
VarBase: containing the numerical result.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
from paddle.fluid.dygraph.jit import declarative
@declarative
def func(x):
x = fluid.dygraph.to_variable(x)
if fluid.layers.mean(x) < 0:
x_v = x - 1
else:
x_v = x + 1
return x_v
x = np.ones([1, 2])
x_v = func(x)
print(x_v.numpy()) # [[2. 2.]]
"""
def __impl__(*args, **kwargs):
program_translator = ProgramTranslator()
if not program_translator.enable_declarative:
warnings.warn(
"The decorator 'declarative' doesn't work when setting ProgramTranslator.enable=False. "
"We will just return dygraph output.")
return dygraph_func(*args, **kwargs)
return program_translator.get_output(dygraph_func, *args, **kwargs)
return __impl__
declarative = wrap_decorator(_declarative_)
@dygraph_only
def _trace(layer,
inputs,
feed_prefix='feed_',
fetch_prefix='fetch_',
tmp_prefix='t_'):
assert isinstance(layer, Layer)
if not isinstance(inputs, (list, tuple)):
inputs = [inputs]
tracer = _dygraph_tracer()._get_program_desc_tracer()
var_list = extract_vars(inputs)
with program_desc_tracing_guard(True):
original_outputs = layer(*inputs)
if not isinstance(original_outputs, (list, tuple)):
outputs = [original_outputs]
else:
outputs = original_outputs
out_vars = [var for var in outputs]
program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
tracer.reset()
with _dygraph_guard(None):
program = create_program_from_desc(program_desc)
return original_outputs, program, feed_names, fetch_names, parameters
class TracedLayer(object):
"""
:api_attr: imperative
TracedLayer is used to convert a forward dygraph model to a static
graph model. This is mainly used to save the dygraph model for online
inference using C++. Besides, users can also do inference in Python
using the converted static graph model, which usually has better
performance than the original dygraph model.
TracedLayer would run the static graph model using :code:`Executor`
and :code:`CompiledProgram` . The static graph model would share
parameters with the dygraph model.
All TracedLayer objects should not be created by constructor and should
be created by static method :code:`TracedLayer.trace(layer, inputs)` .
The TracedLayer can only be used to convert the data-independent dygraph
model into the static graph model, which means the dygraph model should
be independent with the tensor data and shape.
"""
def __init__(self, program, parameters, feed_names, fetch_names):
self._program = program
self._feed_names = feed_names
self._fetch_names = fetch_names
self._params = parameters
self._place = _current_expected_place()
self._scope = core.Scope()
for p in parameters:
src_tensor = p.value().get_tensor()
dst_tensor = self._scope.var(p.name).get_tensor()
dst_tensor._share_data_with(src_tensor)
self._exe = Executor(self._place)
self._compiled_program = None
self._build_strategy = None
self._exec_strategy = None
@property
def program(self):
return self._program
def _switch(self, is_test=True):
for block_id in range(self._program.num_blocks):
block = self._program.block(block_id)
for op in block.ops:
if op.has_attr("is_test"):
op._set_attr("is_test", is_test)
@staticmethod
@dygraph_only
def trace(layer, inputs):
"""
This method is the only allowed method to create TracedLayer object.
It would call the :code:`layer(*inputs)` method to run the dygraph
model and convert it into a static graph model.
Args:
layer (dygraph.Layer): the layer object to be traced.
inputs (list(Variable)): the input variables of the layer object.
Returns:
tuple: A tuple of 2 items, whose the first item is the output of
:code:`layer(*inputs)` , and the second item is the created
TracedLayer object.
Examples:
.. code-block:: python:
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
import numpy as np
class ExampleLayer(fluid.dygraph.Layer):
def __init__(self):
super(ExampleLayer, self).__init__()
self._fc = Linear(3, 10)
def forward(self, input):
return self._fc(input)
with fluid.dygraph.guard():
layer = ExampleLayer()
in_np = np.random.random([2, 3]).astype('float32')
in_var = to_variable(in_np)
out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
# run the static graph model using Executor inside
out_static_graph = static_layer([in_var])
print(len(out_static_graph)) # 1
print(out_static_graph[0].shape) # (2, 10)
# save the static graph model for inference
static_layer.save_inference_model(dirname='./saved_infer_model')
"""
outs, prog, feed, fetch, parameters = _trace(layer, inputs)
traced = TracedLayer(prog, parameters, feed, fetch)
return outs, traced
def set_strategy(self, build_strategy=None, exec_strategy=None):
"""
Set the strategies when running static graph model.
Args:
build_strategy (BuildStrategy, optional): build strategy of
:code:`CompiledProgram` inside TracedLayer. Default None.
exec_strategy (ExecutionStrategy, optional): execution strategy of
:code:`CompiledProgram` inside TracedLayer. Default None.
Returns:
None
Examples:
.. code-block:: python:
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
import numpy as np
class ExampleLayer(fluid.dygraph.Layer):
def __init__(self):
super(ExampleLayer, self).__init__()
self._fc = Linear(3, 10)
def forward(self, input):
return self._fc(input)
with fluid.dygraph.guard():
layer = ExampleLayer()
in_np = np.random.random([2, 3]).astype('float32')
in_var = to_variable(in_np)
out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
build_strategy = fluid.BuildStrategy()
build_strategy.enable_inplace = True
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = 2
static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
out_static_graph = static_layer([in_var])
"""
assert self._compiled_program is None, "Cannot set strategy after run"
self._build_strategy = build_strategy
self._exec_strategy = exec_strategy
@switch_to_static_graph
def _compile(self):
self._compiled_program = CompiledProgram(
self._program).with_data_parallel(
build_strategy=self._build_strategy,
exec_strategy=self._exec_strategy,
places=self._place)
def _build_feed(self, inputs):
assert isinstance(inputs, (list, tuple)), \
"Inputs should be a list or tuple of variables"
assert len(inputs) == len(self._feed_names)
feed_dict = {}
if in_dygraph_mode():
for x, name in zip(inputs, self._feed_names):
feed_dict[name] = x.value().get_tensor()
else:
for x, name in zip(inputs, self._feed_names):
feed_dict[name] = x
return feed_dict
@switch_to_static_graph
def _run(self, feed):
return self._exe.run(self._compiled_program,
feed=feed,
fetch_list=self._fetch_names)
def __call__(self, inputs):
with scope_guard(self._scope):
if self._compiled_program is None:
self._compile()
return self._run(self._build_feed(inputs))
@switch_to_static_graph
def save_inference_model(self, dirname, feed=None, fetch=None):
"""
Save the TracedLayer to a model for inference. The saved
inference model can be loaded by C++ inference APIs.
Args:
dirname (str): the directory to save the inference model.
feed (list[int], optional): the input variable indices of the saved
inference model. If None, all input variables of the
TracedLayer object would be the inputs of the saved inference
model. Default None.
fetch (list[int], optional): the output variable indices of the
saved inference model. If None, all output variables of the
TracedLayer object would be the outputs of the saved inference
model. Default None.
Returns:
None
Examples:
.. code-block:: python:
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
import numpy as np
class ExampleLayer(fluid.dygraph.Layer):
def __init__(self):
super(ExampleLayer, self).__init__()
self._fc = Linear(3, 10)
def forward(self, input):
return self._fc(input)
save_dirname = './saved_infer_model'
in_np = np.random.random([2, 3]).astype('float32')
with fluid.dygraph.guard():
layer = ExampleLayer()
in_var = to_variable(in_np)
out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
place = fluid.CPUPlace()
exe = fluid.Executor(place)
program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname,
exe)
fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
print(fetch.shape) # (2, 10)
"""
from paddle.fluid.io import save_inference_model
def get_feed_fetch(all_vars, partial_vars):
if partial_vars is None:
return all_vars
return [all_vars[idx] for idx in partial_vars]
with scope_guard(self._scope):
feeded_var_names = get_feed_fetch(self._feed_names, feed)
target_var_names = get_feed_fetch(self._fetch_names, fetch)
target_vars = []
for name in target_var_names:
target_var = self._program.global_block().vars.get(name, None)
assert target_var is not None, "{} cannot be found".format(name)
target_vars.append(target_var)
save_inference_model(
dirname=dirname,
feeded_var_names=feeded_var_names,
target_vars=target_vars,
executor=self._exe,
main_program=self._program.clone())