You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dataloader/fetcher.py

67 lines
2.4 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class _DatasetFetcher(object):
def __init__(self, dataset, auto_collate_batch, collate_fn, drop_last):
self.dataset = dataset
self.auto_collate_batch = auto_collate_batch
self.collate_fn = collate_fn
self.drop_last = drop_last
def fetch(self, batch_indices):
raise NotImplementedError("'fetch' not implement for class {}".format(
self.__class__.__name__))
class _IterableDatasetFetcher(_DatasetFetcher):
def __init__(self, dataset, auto_collate_batch, collate_fn, drop_last):
super(_IterableDatasetFetcher, self).__init__(dataset, auto_collate_batch,
collate_fn, drop_last)
self.dataset_iter = iter(dataset)
def fetch(self, batch_indices):
if self.auto_collate_batch:
data = []
for _ in batch_indices:
try:
data.append(next(self.dataset_iter))
except StopIteration:
break
if len(data) == 0 or (self.drop_last and
len(data) < len(batch_indices)):
raise StopIteration
else:
data = next(self.dataset_iter)
if self.collate_fn:
data = self.collate_fn(data)
return data
class _MapDatasetFetcher(_DatasetFetcher):
def __init__(self, dataset, auto_collate_batch, collate_fn, drop_last):
super(_MapDatasetFetcher, self).__init__(dataset, auto_collate_batch, collate_fn, drop_last)
def fetch(self, batch_indices):
if self.auto_collate_batch:
data = [self.dataset[idx] for idx in batch_indices]
else:
data = self.dataset[batch_indices]
if self.collate_fn:
data = self.collate_fn(data)
return data