You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
884 lines
29 KiB
884 lines
29 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Defination of Role Makers."""
|
|
import os
|
|
import time
|
|
import numpy as np
|
|
import warnings
|
|
from multiprocessing import Process, Manager
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
class Role:
|
|
WORKER = 1
|
|
SERVER = 2
|
|
HETER_WORKER = 3
|
|
ALL = 4
|
|
|
|
|
|
class Gloo(object):
|
|
"""
|
|
Gloo is a universal class for barrier and collective communication
|
|
"""
|
|
|
|
class RENDEZVOUS:
|
|
HDFS = 1
|
|
FILE = 2
|
|
HTTP = 3
|
|
|
|
def __init__(self):
|
|
self._worker_comm = None
|
|
self._server_comm = None
|
|
self._nodes_comm = None
|
|
|
|
self._comm_world = ["worker", "server", "all"]
|
|
self._err_init = "gloo is not initialized, will not communicator with other nodes"
|
|
self._err_type = "gloo initialized error, please check arguments"
|
|
self._err_world = "argument error, comm_world must in {}".format(
|
|
self._comm_world)
|
|
|
|
self._is_initialized = False
|
|
self._init_timeout_seconds = 3600
|
|
self._run_timeout_seconds = 9999999
|
|
|
|
self._rendezvous = None
|
|
self._role = None
|
|
self._iface = None
|
|
|
|
self._role_id = -1
|
|
self._worker_num = -1
|
|
self._server_num = -1
|
|
self._need_init_all = False
|
|
|
|
def init(self,
|
|
rendezvous,
|
|
role,
|
|
role_id,
|
|
worker_num,
|
|
server_num,
|
|
need_init_all=False,
|
|
kwargs=None):
|
|
|
|
self._rendezvous = rendezvous
|
|
self._role = role
|
|
self._role_id = role_id
|
|
self._worker_num = worker_num
|
|
self._server_num = server_num
|
|
self._need_init_all = need_init_all
|
|
self._iface = self.__get_default_iface()
|
|
self._prefix = kwargs.get("store.prefix", "")
|
|
|
|
if self._rendezvous == Gloo.RENDEZVOUS.HDFS:
|
|
dfs_name = kwargs.get("dfs.name", "")
|
|
dfs_ugi = kwargs.get("dfs.ugi", "")
|
|
dfs_path = kwargs.get("dfs.path", "")
|
|
|
|
if not dfs_name or not dfs_ugi or not dfs_path:
|
|
raise ValueError(self._err_type)
|
|
self._init_dfs(dfs_name, dfs_ugi, dfs_path, self._prefix)
|
|
|
|
elif self._rendezvous == Gloo.RENDEZVOUS.FILE:
|
|
fs_path = kwargs.get("dfs.path", "")
|
|
|
|
if not fs_path:
|
|
raise ValueError(self._err_type)
|
|
self._init_fs(fs_path, self._prefix)
|
|
|
|
elif self._rendezvous == Gloo.RENDEZVOUS.HTTP:
|
|
ip = kwargs.get("http.host", "")
|
|
port = kwargs.get("http.port", "")
|
|
|
|
if not ip or not port:
|
|
raise ValueError(self._err_type)
|
|
self._init_http(ip, port, self._prefix)
|
|
|
|
else:
|
|
raise ValueError(self._err_type)
|
|
|
|
self._is_initialized = True
|
|
|
|
def _init_fs(self, fs_path, prefix):
|
|
def init(rank, nodes, role):
|
|
gloo = fluid.core.Gloo()
|
|
gloo.set_rank(rank)
|
|
gloo.set_size(nodes)
|
|
gloo.set_prefix(prefix)
|
|
gloo.set_iface(self._iface)
|
|
gloo.set_timeout_seconds(self._init_timeout_seconds,
|
|
self._run_timeout_seconds)
|
|
gloo.set_hdfs_store(os.path.join(fs_path, role), "", "")
|
|
gloo.init()
|
|
return gloo
|
|
|
|
if self._role == Role.WORKER:
|
|
rank, nodes = self._get_rank_nodes(Role.WORKER)
|
|
gloo = init(rank, nodes, "WORKER")
|
|
self._worker_comm = gloo
|
|
else:
|
|
rank, nodes = self._get_rank_nodes(Role.SERVER)
|
|
gloo = init(rank, nodes, "SERVER")
|
|
self._server_comm = gloo
|
|
|
|
if self._need_init_all:
|
|
rank, nodes = self._get_rank_nodes(Role.ALL)
|
|
gloo = init(rank, nodes, "ALL")
|
|
self._nodes_comm = gloo
|
|
|
|
def _init_dfs(self, dfs_name, dfs_ugi, dfs_path, prefix):
|
|
def init(rank, nodes, role):
|
|
gloo = fluid.core.Gloo()
|
|
gloo.set_rank(rank)
|
|
gloo.set_size(nodes)
|
|
gloo.set_prefix(prefix)
|
|
gloo.set_iface(self._iface)
|
|
gloo.set_timeout_seconds(self._init_timeout_seconds,
|
|
self._run_timeout_seconds)
|
|
gloo.set_hdfs_store(os.path.join(dfs_path, role), dfs_name, dfs_ugi)
|
|
gloo.init()
|
|
return gloo
|
|
|
|
if self._role == Role.WORKER:
|
|
rank, nodes = self._get_rank_nodes(Role.WORKER)
|
|
gloo = init(rank, nodes, "WORKER")
|
|
self._worker_comm = gloo
|
|
else:
|
|
rank, nodes = self._get_rank_nodes(Role.SERVER)
|
|
gloo = init(rank, nodes, "SERVER")
|
|
self._server_comm = gloo
|
|
|
|
if self._need_init_all:
|
|
rank, nodes = self._get_rank_nodes(Role.ALL)
|
|
gloo = init(rank, nodes, "ALL")
|
|
self._nodes_comm = gloo
|
|
|
|
def _init_http(self, ip, port, prefix):
|
|
def __start_kv_server(http_server_d, size_d):
|
|
from paddle.distributed.fleet.utils.http_server import KVServer
|
|
http_server = KVServer(port, size_d)
|
|
http_server.start()
|
|
wait_seconds = 5
|
|
while http_server_d.get("running",
|
|
False) and not http_server.shoud_stop():
|
|
time.sleep(wait_seconds)
|
|
http_server.stop()
|
|
|
|
def init_kv_server():
|
|
size_d = {
|
|
"trainer": self._worker_num,
|
|
"pserver": self._server_num,
|
|
"all": self._worker_num + self._server_num
|
|
}
|
|
|
|
_http_server_d = {"running": True}
|
|
# child process for http server
|
|
_http_server = Process(
|
|
target=__start_kv_server, args=(_http_server_d, size_d))
|
|
_http_server.daemon = True
|
|
# set running status to True
|
|
# start child process
|
|
_http_server.start()
|
|
|
|
def init(rank, nodes, role):
|
|
gloo = fluid.core.Gloo()
|
|
gloo.set_rank(rank)
|
|
gloo.set_size(nodes)
|
|
gloo.set_prefix(prefix)
|
|
gloo.set_iface(self._iface)
|
|
gloo.set_timeout_seconds(self._init_timeout_seconds,
|
|
self._run_timeout_seconds)
|
|
gloo.set_http_store(ip, port, role)
|
|
return gloo
|
|
|
|
port = int(port)
|
|
|
|
if self._role == Role.SERVER and self._role_id == 0:
|
|
init_kv_server()
|
|
|
|
if self._role == Role.WORKER:
|
|
rank, nodes = self._get_rank_nodes(Role.WORKER)
|
|
gloo = init(rank, nodes, "WORKER")
|
|
self._worker_comm = gloo
|
|
else:
|
|
rank, nodes = self._get_rank_nodes(Role.SERVER)
|
|
gloo = init(rank, nodes, "SERVER")
|
|
self._server_comm = gloo
|
|
|
|
if self._need_init_all:
|
|
rank, nodes = self._get_rank_nodes(Role.ALL)
|
|
gloo = init(rank, nodes, "ALL")
|
|
self._nodes_comm = gloo
|
|
|
|
def _get_rank_nodes(self, role):
|
|
nodes = 0
|
|
rank = -1
|
|
|
|
if role == Role.WORKER:
|
|
nodes = self._worker_num
|
|
rank = self._role_id
|
|
elif role == Role.SERVER:
|
|
nodes = self._server_num
|
|
rank = self._role_id
|
|
elif role == Role.ALL:
|
|
nodes = self._worker_num + self._server_num
|
|
|
|
if self._role == Role.WORKER:
|
|
rank = self._role_id
|
|
else:
|
|
rank = self._worker_num + self._role_id
|
|
else:
|
|
ValueError(self._err_type)
|
|
|
|
return rank, nodes
|
|
|
|
def __get_default_iface(self):
|
|
"""
|
|
get default physical interface
|
|
"""
|
|
default1 = self.__get_default_iface_from_gateway()
|
|
default2 = self.__get_default_iface_from_interfaces()
|
|
return default2 if default1 == "lo" else default1
|
|
|
|
def __get_default_iface_from_gateway(self):
|
|
"""
|
|
get default physical interface
|
|
"""
|
|
import netifaces
|
|
gateways = netifaces.gateways()
|
|
if gateways.get(netifaces.AF_INET) != None:
|
|
gateway = gateways[netifaces.AF_INET]
|
|
if len(gateway) > 0 and len(gateway[0]) > 1:
|
|
return gateway[0][1]
|
|
return "lo"
|
|
|
|
def __get_default_iface_from_interfaces(self):
|
|
"""
|
|
get default physical interface
|
|
"""
|
|
import netifaces
|
|
for intf_name in netifaces.interfaces():
|
|
addresses = netifaces.ifaddresses(intf_name)
|
|
if netifaces.AF_INET in addresses:
|
|
ipv4_addresses = addresses[netifaces.AF_INET]
|
|
for ipv4_address in ipv4_addresses:
|
|
if 'broadcast' in ipv4_address:
|
|
return intf_name
|
|
return "lo"
|
|
|
|
def barrier(self, comm_world):
|
|
"""
|
|
dummy barrier, do nothing
|
|
"""
|
|
if not self._is_initialized:
|
|
warnings.warn(self._err_init)
|
|
return
|
|
|
|
if comm_world not in self._comm_world:
|
|
raise ValueError(self._err_world)
|
|
|
|
if comm_world == "worker":
|
|
self._worker_comm.barrier()
|
|
elif comm_world == "server":
|
|
self._server_comm.barrier()
|
|
else:
|
|
self._nodes_comm.barrier()
|
|
|
|
def all_reduce(self, input, mode="sum", comm_world="worker"):
|
|
if not self._is_initialized:
|
|
warnings.warn(self._err_init)
|
|
return input
|
|
|
|
if comm_world not in self._comm_world:
|
|
raise ValueError(self._err_world)
|
|
|
|
input = np.array(input)
|
|
input_shape = input.shape
|
|
input_list = input.reshape(-1).tolist()
|
|
|
|
self.barrier(comm_world)
|
|
|
|
if comm_world == "worker":
|
|
ans = self._worker_comm.all_reduce(input_list, mode)
|
|
elif comm_world == "server":
|
|
ans = self._server_comm.all_reduce(input_list, mode)
|
|
else:
|
|
ans = self._nodes_comm.all_reduce(input_list, mode)
|
|
|
|
output = np.array(ans).reshape(input_shape)
|
|
return output
|
|
|
|
def all_gather(self, input, comm_world="worker"):
|
|
"""
|
|
dummy all gather, do nothing
|
|
Args:
|
|
obj(any): obj to do all gather
|
|
"""
|
|
if not self._is_initialized:
|
|
warnings.warn(self._err_init)
|
|
return input
|
|
|
|
if comm_world not in self._comm_world:
|
|
raise ValueError(self._err_world)
|
|
|
|
if comm_world == "worker":
|
|
output = self._worker_comm.all_gather(input)
|
|
elif comm_world == "server":
|
|
output = self._server_comm.all_gather(input)
|
|
else:
|
|
output = self._nodes_comm.all_gather(input)
|
|
|
|
return output
|
|
|
|
|
|
class RoleMakerBase(object):
|
|
"""
|
|
RoleMakerBase is a base class for assigning a role to current process
|
|
in distributed training.
|
|
A paddle developer can implement RoleMakerBase to design a role maker
|
|
for worker or pserver assignment.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self._worker_endpoints = []
|
|
self._server_endpoints = []
|
|
self._role_is_generated = False
|
|
self._role = None
|
|
self._current_id = -1
|
|
|
|
# for heter parameter server mode
|
|
self._heter_trainer_endpoints = []
|
|
self._heter_trainer_device = "CPU"
|
|
self._is_heter_parameter_server_mode = False
|
|
|
|
def _is_worker(self):
|
|
"""
|
|
return is_worker() of current process
|
|
"""
|
|
raise NotImplementedError("Please implement this method in child class")
|
|
|
|
def _is_server(self):
|
|
"""
|
|
return is_server() of current process
|
|
"""
|
|
raise NotImplementedError("Please implement this method in child class")
|
|
|
|
def _is_first_worker(self):
|
|
"""
|
|
Check whether the node is the first instance of worker.
|
|
Returns:
|
|
bool: True if this is the first node of worker,
|
|
False if not.
|
|
"""
|
|
raise NotImplementedError("Please implement this method in child class")
|
|
|
|
def _worker_num(self):
|
|
"""
|
|
Get current total worker number.
|
|
|
|
Returns:
|
|
int: worker number
|
|
"""
|
|
raise NotImplementedError("Please implement this method in child class")
|
|
|
|
def _server_num(self):
|
|
"""
|
|
Get current total server number.
|
|
|
|
Returns:
|
|
int: server number
|
|
"""
|
|
raise NotImplementedError("Please implement this method in child class")
|
|
|
|
def _worker_index(self):
|
|
"""
|
|
Get current worker id.
|
|
|
|
Returns:
|
|
int: node id
|
|
"""
|
|
raise NotImplementedError("Please implement this method in child class")
|
|
|
|
def _server_index(self):
|
|
"""
|
|
Get current server id.
|
|
|
|
Returns:
|
|
int: node id
|
|
"""
|
|
raise NotImplementedError("Please implement this method in child class")
|
|
|
|
def _role_id(self):
|
|
"""
|
|
Get current id.
|
|
|
|
Returns:
|
|
int: node id
|
|
"""
|
|
raise NotImplementedError("Please implement this method in child class")
|
|
|
|
def _node_num(self):
|
|
"""
|
|
Get the training node number
|
|
Returns:
|
|
int: node num
|
|
"""
|
|
raise NotImplementedError("Please implement this method in child class")
|
|
|
|
def _get_trainer_endpoints(self):
|
|
"""
|
|
return trainer endpoints
|
|
"""
|
|
return self._worker_endpoints
|
|
|
|
def _get_pserver_endpoints(self):
|
|
"""
|
|
return pserver endpoints
|
|
"""
|
|
return self._server_endpoints
|
|
|
|
def to_string(self):
|
|
return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format(
|
|
self._role, self._current_id, self._worker_endpoints,
|
|
self._server_endpoints)
|
|
|
|
def _all_gather(self, input, comm_world="worker"):
|
|
print("warning: RoleMakerBase does not have all gather worker.")
|
|
return None
|
|
|
|
def _all_reduce(self, input, mode="sum", comm_world="worker"):
|
|
"""
|
|
Args:
|
|
input(list/numpy.array): array of one dim
|
|
output(list/numpy.array): array of one dim
|
|
mode(str): "sum" or "min" or "max"
|
|
"""
|
|
print("warning: RoleMakerBase does not have all reduce worker.")
|
|
return None
|
|
|
|
def _barrier(self, comm_world):
|
|
"""
|
|
barrier between trainers if current role is TRAINER
|
|
"""
|
|
print("warning: RoleMakerBase does not have barrier worker.")
|
|
|
|
def _is_heter_worker(self):
|
|
"""
|
|
Return is_heter_worker() of current process
|
|
"""
|
|
warnings.warn("RoleMakerBase does not have function: _is_heter_worker.")
|
|
return False
|
|
|
|
def _heter_worker_num(self):
|
|
"""
|
|
Get current total heter-worker number.
|
|
|
|
Returns:
|
|
int: heter_worker number
|
|
"""
|
|
warnings.warn(
|
|
"RoleMakerBase does not have function: _heter_worker_num.")
|
|
return 0
|
|
|
|
def _get_heter_worker_endpoints(self):
|
|
"""
|
|
Returns:
|
|
string: all heter_trainers'endpoints
|
|
"""
|
|
assert self._heter_trainer_endpoints != []
|
|
return self._heter_trainer_endpoints
|
|
|
|
def _get_heter_worker_endpoint(self):
|
|
"""
|
|
Returns:
|
|
int: corresponding heter_trainer's endpoint
|
|
|
|
e.g: if we have 4 cpu-trainer(default), 2 gpu-trainer(heter)
|
|
then No.0 and No.2 cpu-trainer will work with No.0 gpu-trainer
|
|
and No.1 and No.3 cpu-trainer will work with No.1 gpu-trainerr
|
|
"""
|
|
assert self._heter_trainer_endpoints != []
|
|
return self._heter_trainer_endpoints[(self._current_id + 1) %
|
|
self._heter_worker_num()]
|
|
|
|
def _get_heter_worker_device(self):
|
|
"""
|
|
Returns:
|
|
string: heter_trainer's device of current node, e.g: CPU/GPU/XPU
|
|
"""
|
|
return self._heter_trainer_device.upper()
|
|
|
|
|
|
class PaddleCloudRoleMaker(RoleMakerBase):
|
|
def __init__(self, is_collective=False, **kwargs):
|
|
super(PaddleCloudRoleMaker, self).__init__()
|
|
self._is_collective = is_collective
|
|
|
|
self._non_distributed = False
|
|
|
|
self._kwargs = kwargs
|
|
self._role_is_generated = False
|
|
|
|
self._server_endpoints = None
|
|
self._worker_endpoints = None
|
|
|
|
self._gloo = Gloo() # gloo instance
|
|
|
|
def _barrier(self, comm_world):
|
|
self._gloo.barrier(comm_world)
|
|
|
|
def _all_gather(self, input, comm_world="worker"):
|
|
return self._gloo.all_gather(input, comm_world)
|
|
|
|
def _all_reduce(self, input, mode="sum", comm_world="worker"):
|
|
return self._gloo.all_reduce(input, mode, comm_world)
|
|
|
|
def _is_worker(self):
|
|
"""
|
|
whether current process is worker
|
|
"""
|
|
if not self._role_is_generated:
|
|
self._generate_role()
|
|
return self._role == Role.WORKER
|
|
|
|
def _is_server(self):
|
|
"""
|
|
whether current process is server
|
|
"""
|
|
if not self._role_is_generated:
|
|
self._generate_role()
|
|
return self._role == Role.SERVER
|
|
|
|
def _is_first_worker(self):
|
|
"""
|
|
whether current process is worker of rank 0
|
|
"""
|
|
if not self._role_is_generated:
|
|
self._generate_role()
|
|
return self._role == Role.WORKER and self._current_id == 0
|
|
|
|
def _worker_index(self):
|
|
"""
|
|
get index of current worker
|
|
"""
|
|
if not self._role_is_generated:
|
|
self._generate_role()
|
|
return self._current_id
|
|
|
|
def _server_index(self):
|
|
"""
|
|
get index of current server
|
|
"""
|
|
if not self._role_is_generated:
|
|
self._generate_role()
|
|
return self._current_id
|
|
|
|
def _role_id(self):
|
|
"""
|
|
get index of current node
|
|
"""
|
|
if not self._role_is_generated:
|
|
self._generate_role()
|
|
return self._current_id
|
|
|
|
def _worker_num(self):
|
|
"""
|
|
retrun the current number of worker
|
|
"""
|
|
if not self._role_is_generated:
|
|
self._generate_role()
|
|
return self._trainers_num
|
|
|
|
def _server_num(self):
|
|
"""
|
|
return the current number of server
|
|
"""
|
|
if not self._role_is_generated:
|
|
self._generate_role()
|
|
return len(self._get_pserver_endpoints())
|
|
|
|
def _node_num(self):
|
|
"""
|
|
return the training node number
|
|
"""
|
|
if not self._role_is_generated:
|
|
self._generate_role()
|
|
return self._nodes_num
|
|
|
|
def _get_trainer_endpoints(self):
|
|
"""
|
|
get endpoint of all trainers
|
|
"""
|
|
if not self._role_is_generated:
|
|
self._generate_role()
|
|
return self._worker_endpoints
|
|
|
|
def _get_pserver_endpoints(self):
|
|
"""
|
|
get endpoint of all pservers
|
|
"""
|
|
if not self._role_is_generated:
|
|
self._generate_role()
|
|
return self._server_endpoints
|
|
|
|
def _is_non_distributed(self):
|
|
"""
|
|
Return True if indispensable environment for fleetrun is not found
|
|
(use python-run to launch fleet-code directly)
|
|
"""
|
|
if not self._role_is_generated:
|
|
self._generate_role()
|
|
return self._non_distributed
|
|
|
|
def _heter_worker_num(self):
|
|
"""
|
|
get heter worker nums
|
|
"""
|
|
if not self._role_is_generated:
|
|
self._generate_role()
|
|
return self._heter_trainers_num
|
|
|
|
def _is_heter_worker(self):
|
|
"""
|
|
whether current process is heter worker
|
|
"""
|
|
if not self._role_is_generated:
|
|
self._generate_role()
|
|
return self._role == Role.HETER_WORKER
|
|
|
|
def _ps_env(self):
|
|
try:
|
|
# Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
|
|
# format: string(ip:port,ip:port), eg. 127.0.0.1:6001,127.0.0.1:6002
|
|
self._server_endpoints = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
|
|
|
|
if self._server_endpoints is None:
|
|
# back to non_distributed execution.
|
|
self._server_endpoints = ""
|
|
self._trainers_num = 1
|
|
self._role = Role.WORKER
|
|
self._current_id = 0
|
|
self._nodes_num = 1
|
|
self._heter_trainers_num = 0
|
|
self._heter_trainer_endpoints = None
|
|
self._non_distributed = True
|
|
return
|
|
|
|
self._server_endpoints = self._server_endpoints.split(",")
|
|
|
|
self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
|
|
if self._worker_endpoints:
|
|
self._worker_endpoints = self._worker_endpoints.split(",")
|
|
else:
|
|
self._worker_endpoints = []
|
|
|
|
trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
|
|
training_role = os.environ["TRAINING_ROLE"]
|
|
|
|
if training_role not in ["TRAINER", "PSERVER", "HETER_TRAINER"]:
|
|
raise ValueError(
|
|
"TRAINING_ROLE must be PSERVER or TRAINER or HETER_TRAINER, but get {}, please check your environment.".
|
|
format(training_role))
|
|
|
|
# For heter parameter server env setting
|
|
heter_trainer_eplist = os.getenv(
|
|
"PADDLE_HETER_TRAINER_IP_PORT_LIST", None)
|
|
heter_trainer_device = os.getenv("PADDLE_HETER_TRAINER_DEVICE",
|
|
None)
|
|
if heter_trainer_eplist and heter_trainer_device:
|
|
try:
|
|
heter_trainer_eplist = os.environ[
|
|
"PADDLE_HETER_TRAINER_IP_PORT_LIST"].split(",")
|
|
except:
|
|
raise ValueError(
|
|
"Can not Find PADDLE_HETER_TRAINER_IP_PORT_LIST in env or its format doesn't match the requirement: 'IP:PORT,IP:PORT' ."
|
|
)
|
|
|
|
self._is_heter_parameter_server_mode = True
|
|
heter_trainers_num = len(heter_trainer_eplist)
|
|
current_node_device = heter_trainer_device.upper()
|
|
if current_node_device not in ["CPU", "GPU", "XPU"]:
|
|
raise ValueError(
|
|
"Heter Trainer doesn't support {} device now, please use CPU / GPU / XPU(KunLun)".
|
|
format(heter_trainer_device))
|
|
self._heter_trainer_device = current_node_device
|
|
else:
|
|
self._is_heter_parameter_server_mode = False
|
|
heter_trainers_num = 0
|
|
|
|
if training_role == "TRAINER":
|
|
role = Role.WORKER
|
|
current_id = int(os.environ["PADDLE_TRAINER_ID"])
|
|
if len(self._worker_endpoints) > 0:
|
|
self._cur_endpoint = self._worker_endpoints[current_id]
|
|
elif training_role == "PSERVER":
|
|
role = Role.SERVER
|
|
port = os.environ["PADDLE_PORT"]
|
|
ip = os.environ["POD_IP"]
|
|
self._cur_endpoint = ip + ":" + port
|
|
current_id = self._server_endpoints.index(self._cur_endpoint)
|
|
elif training_role == "HETER_TRAINER":
|
|
role = Role.HETER_WORKER
|
|
cur_ip = os.environ["POD_IP"]
|
|
cur_port = os.environ["PADDLE_PORT"]
|
|
curr_endpoint = ":".join([cur_ip, cur_port])
|
|
current_id = heter_trainer_eplist.index(curr_endpoint)
|
|
else:
|
|
raise ValueError(
|
|
"TRAINING_ROLE must be PSERVER or TRAINER or HETER_TRAINER")
|
|
except ValueError as e:
|
|
raise ValueError(
|
|
"Something wrong with PaddleCloud, please check environment")
|
|
|
|
self._trainers_num = trainers_num
|
|
self._role = role
|
|
self._current_id = current_id
|
|
self._nodes_num = len(
|
|
set([x.split(':')[0] for x in self._worker_endpoints]))
|
|
self._heter_trainers_num = heter_trainers_num
|
|
self._heter_trainer_endpoints = heter_trainer_eplist
|
|
|
|
def _collective_env(self):
|
|
self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
|
|
self._training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
|
|
assert (self._training_role == "TRAINER")
|
|
self._role = Role.WORKER
|
|
self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
|
|
self._cur_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
|
|
if self._worker_endpoints is None:
|
|
# back to non_distributed execution.
|
|
self._worker_endpoints = "127.0.0.1:6170"
|
|
self._cur_endpoint = self._worker_endpoints
|
|
self._non_distributed = True
|
|
self._worker_endpoints = self._worker_endpoints.split(",")
|
|
self._trainers_num = len(self._worker_endpoints)
|
|
self._nodes_num = len(
|
|
set([x.split(':')[0] for x in self._worker_endpoints]))
|
|
|
|
def _gloo_init(self):
|
|
# PADDLE_WITH_GLOO 1: trainer barrier, 2: all barrier
|
|
use_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
|
|
if use_gloo not in [1, 2]:
|
|
return
|
|
|
|
# PADDLE_GLOO_RENDEZVOUS 1: HDFS 2: FILE 3: HTTP
|
|
rendezvous_type = int(os.getenv("PADDLE_GLOO_RENDEZVOUS", "0"))
|
|
prefix = os.getenv("SYS_JOB_ID", "")
|
|
if rendezvous_type not in [
|
|
Gloo.RENDEZVOUS.HDFS, Gloo.RENDEZVOUS.HTTP, Gloo.RENDEZVOUS.FILE
|
|
]:
|
|
raise ValueError(self._gloo._err_type)
|
|
|
|
need_init_all = True if use_gloo == 2 else False
|
|
|
|
if rendezvous_type == Gloo.RENDEZVOUS.HDFS:
|
|
dfs_name = os.getenv("PADDLE_GLOO_FS_NAME", "")
|
|
dfs_ugi = os.getenv("PADDLE_GLOO_FS_UGI", "")
|
|
dfs_path = os.getenv("PADDLE_GLOO_FS_PATH", "")
|
|
kwargs = {
|
|
"dfs.name": dfs_name,
|
|
"dfs.ugi": dfs_ugi,
|
|
"dfs.path": dfs_path,
|
|
"store.prefix": prefix,
|
|
}
|
|
elif rendezvous_type == Gloo.RENDEZVOUS.HTTP:
|
|
ip = os.getenv("PADDLE_GLOO_HTTP_HOST", "")
|
|
port = os.getenv("PADDLE_GLOO_HTTP_PORT", "")
|
|
kwargs = {
|
|
"http.host": ip,
|
|
"http.port": port,
|
|
"store.prefix": prefix,
|
|
}
|
|
else:
|
|
dfs_path = os.getenv("PADDLE_GLOO_FS_PATH", "")
|
|
kwargs = {
|
|
"dfs.path": dfs_path,
|
|
"store.prefix": prefix,
|
|
}
|
|
|
|
if rendezvous_type == Gloo.RENDEZVOUS.HDFS:
|
|
type = "HDFS"
|
|
elif rendezvous_type == Gloo.RENDEZVOUS.HTTP:
|
|
type = "HTTP"
|
|
else:
|
|
type = "FILE"
|
|
print("Gloo init with {}: need_init_all: {}, args: {}".format(
|
|
type, need_init_all, kwargs))
|
|
|
|
self._gloo.init(
|
|
rendezvous=rendezvous_type,
|
|
role=self._role,
|
|
role_id=self._role_id(),
|
|
worker_num=self._worker_num(),
|
|
server_num=self._server_num(),
|
|
need_init_all=need_init_all,
|
|
kwargs=kwargs)
|
|
|
|
def _generate_role(self):
|
|
"""
|
|
generate role for role maker
|
|
"""
|
|
if not self._role_is_generated:
|
|
if not self._is_collective:
|
|
self._ps_env()
|
|
else:
|
|
self._collective_env()
|
|
self._role_is_generated = True
|
|
self._gloo_init()
|
|
|
|
|
|
class UserDefinedRoleMaker(PaddleCloudRoleMaker):
|
|
def __init__(self, is_collective=False, init_gloo=False, **kwargs):
|
|
super(UserDefinedRoleMaker, self).__init__(
|
|
is_collective=is_collective, init_gloo=init_gloo, **kwargs)
|
|
self._init_gloo = init_gloo
|
|
|
|
def _user_defined_ps_env(self):
|
|
self._server_endpoints = self._kwargs.get("server_endpoints")
|
|
self._worker_endpoints = self._kwargs.get("worker_endpoints", [])
|
|
self._trainers_num = self._kwargs.get("worker_num", 0)
|
|
|
|
if self._trainers_num == 0:
|
|
assert (len(self._worker_endpoints) > 0)
|
|
self._trainers_num = len(self._worker_endpoints)
|
|
|
|
self._role = self._kwargs.get("role")
|
|
self._current_id = self._kwargs.get("current_id")
|
|
|
|
if self._role == Role.WORKER and len(
|
|
self._worker_endpoints) > self._current_id:
|
|
self._cur_endpoint = self._worker_endpoints[self._current_id]
|
|
elif self._role == Role.SERVER:
|
|
self._cur_endpoint = self._server_endpoints[self._current_id]
|
|
self._nodes_num = len(
|
|
set([x.split(':')[0] for x in self._worker_endpoints]))
|
|
|
|
def _user_defined_collective_env(self):
|
|
self._worker_endpoints = self._kwargs.get("worker_endpoints")
|
|
self._current_id = self._kwargs.get("current_id")
|
|
self._trainers_num = len(self._worker_endpoints)
|
|
self._training_role = Role.WORKER
|
|
self._nodes_num = len(
|
|
set([x.split(':')[0] for x in self._worker_endpoints]))
|
|
|
|
def _generate_role(self):
|
|
"""
|
|
generate role for role maker
|
|
"""
|
|
if not self._role_is_generated:
|
|
if not self._is_collective:
|
|
self._user_defined_ps_env()
|
|
else:
|
|
self._user_defined_collective_env()
|
|
self._role_is_generated = True
|