You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/distributed/fleet/base/role_maker.py

884 lines
29 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defination of Role Makers."""
import os
import time
import numpy as np
import warnings
from multiprocessing import Process, Manager
import paddle.fluid as fluid
class Role:
WORKER = 1
SERVER = 2
HETER_WORKER = 3
ALL = 4
class Gloo(object):
"""
Gloo is a universal class for barrier and collective communication
"""
class RENDEZVOUS:
HDFS = 1
FILE = 2
HTTP = 3
def __init__(self):
self._worker_comm = None
self._server_comm = None
self._nodes_comm = None
self._comm_world = ["worker", "server", "all"]
self._err_init = "gloo is not initialized, will not communicator with other nodes"
self._err_type = "gloo initialized error, please check arguments"
self._err_world = "argument error, comm_world must in {}".format(
self._comm_world)
self._is_initialized = False
self._init_timeout_seconds = 3600
self._run_timeout_seconds = 9999999
self._rendezvous = None
self._role = None
self._iface = None
self._role_id = -1
self._worker_num = -1
self._server_num = -1
self._need_init_all = False
def init(self,
rendezvous,
role,
role_id,
worker_num,
server_num,
need_init_all=False,
kwargs=None):
self._rendezvous = rendezvous
self._role = role
self._role_id = role_id
self._worker_num = worker_num
self._server_num = server_num
self._need_init_all = need_init_all
self._iface = self.__get_default_iface()
self._prefix = kwargs.get("store.prefix", "")
if self._rendezvous == Gloo.RENDEZVOUS.HDFS:
dfs_name = kwargs.get("dfs.name", "")
dfs_ugi = kwargs.get("dfs.ugi", "")
dfs_path = kwargs.get("dfs.path", "")
if not dfs_name or not dfs_ugi or not dfs_path:
raise ValueError(self._err_type)
self._init_dfs(dfs_name, dfs_ugi, dfs_path, self._prefix)
elif self._rendezvous == Gloo.RENDEZVOUS.FILE:
fs_path = kwargs.get("dfs.path", "")
if not fs_path:
raise ValueError(self._err_type)
self._init_fs(fs_path, self._prefix)
elif self._rendezvous == Gloo.RENDEZVOUS.HTTP:
ip = kwargs.get("http.host", "")
port = kwargs.get("http.port", "")
if not ip or not port:
raise ValueError(self._err_type)
self._init_http(ip, port, self._prefix)
else:
raise ValueError(self._err_type)
self._is_initialized = True
def _init_fs(self, fs_path, prefix):
def init(rank, nodes, role):
gloo = fluid.core.Gloo()
gloo.set_rank(rank)
gloo.set_size(nodes)
gloo.set_prefix(prefix)
gloo.set_iface(self._iface)
gloo.set_timeout_seconds(self._init_timeout_seconds,
self._run_timeout_seconds)
gloo.set_hdfs_store(os.path.join(fs_path, role), "", "")
gloo.init()
return gloo
if self._role == Role.WORKER:
rank, nodes = self._get_rank_nodes(Role.WORKER)
gloo = init(rank, nodes, "WORKER")
self._worker_comm = gloo
else:
rank, nodes = self._get_rank_nodes(Role.SERVER)
gloo = init(rank, nodes, "SERVER")
self._server_comm = gloo
if self._need_init_all:
rank, nodes = self._get_rank_nodes(Role.ALL)
gloo = init(rank, nodes, "ALL")
self._nodes_comm = gloo
def _init_dfs(self, dfs_name, dfs_ugi, dfs_path, prefix):
def init(rank, nodes, role):
gloo = fluid.core.Gloo()
gloo.set_rank(rank)
gloo.set_size(nodes)
gloo.set_prefix(prefix)
gloo.set_iface(self._iface)
gloo.set_timeout_seconds(self._init_timeout_seconds,
self._run_timeout_seconds)
gloo.set_hdfs_store(os.path.join(dfs_path, role), dfs_name, dfs_ugi)
gloo.init()
return gloo
if self._role == Role.WORKER:
rank, nodes = self._get_rank_nodes(Role.WORKER)
gloo = init(rank, nodes, "WORKER")
self._worker_comm = gloo
else:
rank, nodes = self._get_rank_nodes(Role.SERVER)
gloo = init(rank, nodes, "SERVER")
self._server_comm = gloo
if self._need_init_all:
rank, nodes = self._get_rank_nodes(Role.ALL)
gloo = init(rank, nodes, "ALL")
self._nodes_comm = gloo
def _init_http(self, ip, port, prefix):
def __start_kv_server(http_server_d, size_d):
from paddle.distributed.fleet.utils.http_server import KVServer
http_server = KVServer(port, size_d)
http_server.start()
wait_seconds = 5
while http_server_d.get("running",
False) and not http_server.shoud_stop():
time.sleep(wait_seconds)
http_server.stop()
def init_kv_server():
size_d = {
"trainer": self._worker_num,
"pserver": self._server_num,
"all": self._worker_num + self._server_num
}
_http_server_d = {"running": True}
# child process for http server
_http_server = Process(
target=__start_kv_server, args=(_http_server_d, size_d))
_http_server.daemon = True
# set running status to True
# start child process
_http_server.start()
def init(rank, nodes, role):
gloo = fluid.core.Gloo()
gloo.set_rank(rank)
gloo.set_size(nodes)
gloo.set_prefix(prefix)
gloo.set_iface(self._iface)
gloo.set_timeout_seconds(self._init_timeout_seconds,
self._run_timeout_seconds)
gloo.set_http_store(ip, port, role)
return gloo
port = int(port)
if self._role == Role.SERVER and self._role_id == 0:
init_kv_server()
if self._role == Role.WORKER:
rank, nodes = self._get_rank_nodes(Role.WORKER)
gloo = init(rank, nodes, "WORKER")
self._worker_comm = gloo
else:
rank, nodes = self._get_rank_nodes(Role.SERVER)
gloo = init(rank, nodes, "SERVER")
self._server_comm = gloo
if self._need_init_all:
rank, nodes = self._get_rank_nodes(Role.ALL)
gloo = init(rank, nodes, "ALL")
self._nodes_comm = gloo
def _get_rank_nodes(self, role):
nodes = 0
rank = -1
if role == Role.WORKER:
nodes = self._worker_num
rank = self._role_id
elif role == Role.SERVER:
nodes = self._server_num
rank = self._role_id
elif role == Role.ALL:
nodes = self._worker_num + self._server_num
if self._role == Role.WORKER:
rank = self._role_id
else:
rank = self._worker_num + self._role_id
else:
ValueError(self._err_type)
return rank, nodes
def __get_default_iface(self):
"""
get default physical interface
"""
default1 = self.__get_default_iface_from_gateway()
default2 = self.__get_default_iface_from_interfaces()
return default2 if default1 == "lo" else default1
def __get_default_iface_from_gateway(self):
"""
get default physical interface
"""
import netifaces
gateways = netifaces.gateways()
if gateways.get(netifaces.AF_INET) != None:
gateway = gateways[netifaces.AF_INET]
if len(gateway) > 0 and len(gateway[0]) > 1:
return gateway[0][1]
return "lo"
def __get_default_iface_from_interfaces(self):
"""
get default physical interface
"""
import netifaces
for intf_name in netifaces.interfaces():
addresses = netifaces.ifaddresses(intf_name)
if netifaces.AF_INET in addresses:
ipv4_addresses = addresses[netifaces.AF_INET]
for ipv4_address in ipv4_addresses:
if 'broadcast' in ipv4_address:
return intf_name
return "lo"
def barrier(self, comm_world):
"""
dummy barrier, do nothing
"""
if not self._is_initialized:
warnings.warn(self._err_init)
return
if comm_world not in self._comm_world:
raise ValueError(self._err_world)
if comm_world == "worker":
self._worker_comm.barrier()
elif comm_world == "server":
self._server_comm.barrier()
else:
self._nodes_comm.barrier()
def all_reduce(self, input, mode="sum", comm_world="worker"):
if not self._is_initialized:
warnings.warn(self._err_init)
return input
if comm_world not in self._comm_world:
raise ValueError(self._err_world)
input = np.array(input)
input_shape = input.shape
input_list = input.reshape(-1).tolist()
self.barrier(comm_world)
if comm_world == "worker":
ans = self._worker_comm.all_reduce(input_list, mode)
elif comm_world == "server":
ans = self._server_comm.all_reduce(input_list, mode)
else:
ans = self._nodes_comm.all_reduce(input_list, mode)
output = np.array(ans).reshape(input_shape)
return output
def all_gather(self, input, comm_world="worker"):
"""
dummy all gather, do nothing
Args:
obj(any): obj to do all gather
"""
if not self._is_initialized:
warnings.warn(self._err_init)
return input
if comm_world not in self._comm_world:
raise ValueError(self._err_world)
if comm_world == "worker":
output = self._worker_comm.all_gather(input)
elif comm_world == "server":
output = self._server_comm.all_gather(input)
else:
output = self._nodes_comm.all_gather(input)
return output
class RoleMakerBase(object):
"""
RoleMakerBase is a base class for assigning a role to current process
in distributed training.
A paddle developer can implement RoleMakerBase to design a role maker
for worker or pserver assignment.
"""
def __init__(self):
self._worker_endpoints = []
self._server_endpoints = []
self._role_is_generated = False
self._role = None
self._current_id = -1
# for heter parameter server mode
self._heter_trainer_endpoints = []
self._heter_trainer_device = "CPU"
self._is_heter_parameter_server_mode = False
def _is_worker(self):
"""
return is_worker() of current process
"""
raise NotImplementedError("Please implement this method in child class")
def _is_server(self):
"""
return is_server() of current process
"""
raise NotImplementedError("Please implement this method in child class")
def _is_first_worker(self):
"""
Check whether the node is the first instance of worker.
Returns:
bool: True if this is the first node of worker,
False if not.
"""
raise NotImplementedError("Please implement this method in child class")
def _worker_num(self):
"""
Get current total worker number.
Returns:
int: worker number
"""
raise NotImplementedError("Please implement this method in child class")
def _server_num(self):
"""
Get current total server number.
Returns:
int: server number
"""
raise NotImplementedError("Please implement this method in child class")
def _worker_index(self):
"""
Get current worker id.
Returns:
int: node id
"""
raise NotImplementedError("Please implement this method in child class")
def _server_index(self):
"""
Get current server id.
Returns:
int: node id
"""
raise NotImplementedError("Please implement this method in child class")
def _role_id(self):
"""
Get current id.
Returns:
int: node id
"""
raise NotImplementedError("Please implement this method in child class")
def _node_num(self):
"""
Get the training node number
Returns:
int: node num
"""
raise NotImplementedError("Please implement this method in child class")
def _get_trainer_endpoints(self):
"""
return trainer endpoints
"""
return self._worker_endpoints
def _get_pserver_endpoints(self):
"""
return pserver endpoints
"""
return self._server_endpoints
def to_string(self):
return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format(
self._role, self._current_id, self._worker_endpoints,
self._server_endpoints)
def _all_gather(self, input, comm_world="worker"):
print("warning: RoleMakerBase does not have all gather worker.")
return None
def _all_reduce(self, input, mode="sum", comm_world="worker"):
"""
Args:
input(list/numpy.array): array of one dim
output(list/numpy.array): array of one dim
mode(str): "sum" or "min" or "max"
"""
print("warning: RoleMakerBase does not have all reduce worker.")
return None
def _barrier(self, comm_world):
"""
barrier between trainers if current role is TRAINER
"""
print("warning: RoleMakerBase does not have barrier worker.")
def _is_heter_worker(self):
"""
Return is_heter_worker() of current process
"""
warnings.warn("RoleMakerBase does not have function: _is_heter_worker.")
return False
def _heter_worker_num(self):
"""
Get current total heter-worker number.
Returns:
int: heter_worker number
"""
warnings.warn(
"RoleMakerBase does not have function: _heter_worker_num.")
return 0
def _get_heter_worker_endpoints(self):
"""
Returns:
string: all heter_trainers'endpoints
"""
assert self._heter_trainer_endpoints != []
return self._heter_trainer_endpoints
def _get_heter_worker_endpoint(self):
"""
Returns:
int: corresponding heter_trainer's endpoint
e.g: if we have 4 cpu-trainer(default), 2 gpu-trainer(heter)
then No.0 and No.2 cpu-trainer will work with No.0 gpu-trainer
and No.1 and No.3 cpu-trainer will work with No.1 gpu-trainerr
"""
assert self._heter_trainer_endpoints != []
return self._heter_trainer_endpoints[(self._current_id + 1) %
self._heter_worker_num()]
def _get_heter_worker_device(self):
"""
Returns:
string: heter_trainer's device of current node, e.g: CPU/GPU/XPU
"""
return self._heter_trainer_device.upper()
class PaddleCloudRoleMaker(RoleMakerBase):
def __init__(self, is_collective=False, **kwargs):
super(PaddleCloudRoleMaker, self).__init__()
self._is_collective = is_collective
self._non_distributed = False
self._kwargs = kwargs
self._role_is_generated = False
self._server_endpoints = None
self._worker_endpoints = None
self._gloo = Gloo() # gloo instance
def _barrier(self, comm_world):
self._gloo.barrier(comm_world)
def _all_gather(self, input, comm_world="worker"):
return self._gloo.all_gather(input, comm_world)
def _all_reduce(self, input, mode="sum", comm_world="worker"):
return self._gloo.all_reduce(input, mode, comm_world)
def _is_worker(self):
"""
whether current process is worker
"""
if not self._role_is_generated:
self._generate_role()
return self._role == Role.WORKER
def _is_server(self):
"""
whether current process is server
"""
if not self._role_is_generated:
self._generate_role()
return self._role == Role.SERVER
def _is_first_worker(self):
"""
whether current process is worker of rank 0
"""
if not self._role_is_generated:
self._generate_role()
return self._role == Role.WORKER and self._current_id == 0
def _worker_index(self):
"""
get index of current worker
"""
if not self._role_is_generated:
self._generate_role()
return self._current_id
def _server_index(self):
"""
get index of current server
"""
if not self._role_is_generated:
self._generate_role()
return self._current_id
def _role_id(self):
"""
get index of current node
"""
if not self._role_is_generated:
self._generate_role()
return self._current_id
def _worker_num(self):
"""
retrun the current number of worker
"""
if not self._role_is_generated:
self._generate_role()
return self._trainers_num
def _server_num(self):
"""
return the current number of server
"""
if not self._role_is_generated:
self._generate_role()
return len(self._get_pserver_endpoints())
def _node_num(self):
"""
return the training node number
"""
if not self._role_is_generated:
self._generate_role()
return self._nodes_num
def _get_trainer_endpoints(self):
"""
get endpoint of all trainers
"""
if not self._role_is_generated:
self._generate_role()
return self._worker_endpoints
def _get_pserver_endpoints(self):
"""
get endpoint of all pservers
"""
if not self._role_is_generated:
self._generate_role()
return self._server_endpoints
def _is_non_distributed(self):
"""
Return True if indispensable environment for fleetrun is not found
(use python-run to launch fleet-code directly)
"""
if not self._role_is_generated:
self._generate_role()
return self._non_distributed
def _heter_worker_num(self):
"""
get heter worker nums
"""
if not self._role_is_generated:
self._generate_role()
return self._heter_trainers_num
def _is_heter_worker(self):
"""
whether current process is heter worker
"""
if not self._role_is_generated:
self._generate_role()
return self._role == Role.HETER_WORKER
def _ps_env(self):
try:
# Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
# format: string(ip:port,ip:port), eg. 127.0.0.1:6001,127.0.0.1:6002
self._server_endpoints = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
if self._server_endpoints is None:
# back to non_distributed execution.
self._server_endpoints = ""
self._trainers_num = 1
self._role = Role.WORKER
self._current_id = 0
self._nodes_num = 1
self._heter_trainers_num = 0
self._heter_trainer_endpoints = None
self._non_distributed = True
return
self._server_endpoints = self._server_endpoints.split(",")
self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
if self._worker_endpoints:
self._worker_endpoints = self._worker_endpoints.split(",")
else:
self._worker_endpoints = []
trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
training_role = os.environ["TRAINING_ROLE"]
if training_role not in ["TRAINER", "PSERVER", "HETER_TRAINER"]:
raise ValueError(
"TRAINING_ROLE must be PSERVER or TRAINER or HETER_TRAINER, but get {}, please check your environment.".
format(training_role))
# For heter parameter server env setting
heter_trainer_eplist = os.getenv(
"PADDLE_HETER_TRAINER_IP_PORT_LIST", None)
heter_trainer_device = os.getenv("PADDLE_HETER_TRAINER_DEVICE",
None)
if heter_trainer_eplist and heter_trainer_device:
try:
heter_trainer_eplist = os.environ[
"PADDLE_HETER_TRAINER_IP_PORT_LIST"].split(",")
except:
raise ValueError(
"Can not Find PADDLE_HETER_TRAINER_IP_PORT_LIST in env or its format doesn't match the requirement: 'IP:PORT,IP:PORT' ."
)
self._is_heter_parameter_server_mode = True
heter_trainers_num = len(heter_trainer_eplist)
current_node_device = heter_trainer_device.upper()
if current_node_device not in ["CPU", "GPU", "XPU"]:
raise ValueError(
"Heter Trainer doesn't support {} device now, please use CPU / GPU / XPU(KunLun)".
format(heter_trainer_device))
self._heter_trainer_device = current_node_device
else:
self._is_heter_parameter_server_mode = False
heter_trainers_num = 0
if training_role == "TRAINER":
role = Role.WORKER
current_id = int(os.environ["PADDLE_TRAINER_ID"])
if len(self._worker_endpoints) > 0:
self._cur_endpoint = self._worker_endpoints[current_id]
elif training_role == "PSERVER":
role = Role.SERVER
port = os.environ["PADDLE_PORT"]
ip = os.environ["POD_IP"]
self._cur_endpoint = ip + ":" + port
current_id = self._server_endpoints.index(self._cur_endpoint)
elif training_role == "HETER_TRAINER":
role = Role.HETER_WORKER
cur_ip = os.environ["POD_IP"]
cur_port = os.environ["PADDLE_PORT"]
curr_endpoint = ":".join([cur_ip, cur_port])
current_id = heter_trainer_eplist.index(curr_endpoint)
else:
raise ValueError(
"TRAINING_ROLE must be PSERVER or TRAINER or HETER_TRAINER")
except ValueError as e:
raise ValueError(
"Something wrong with PaddleCloud, please check environment")
self._trainers_num = trainers_num
self._role = role
self._current_id = current_id
self._nodes_num = len(
set([x.split(':')[0] for x in self._worker_endpoints]))
self._heter_trainers_num = heter_trainers_num
self._heter_trainer_endpoints = heter_trainer_eplist
def _collective_env(self):
self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
self._training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
assert (self._training_role == "TRAINER")
self._role = Role.WORKER
self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
self._cur_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
if self._worker_endpoints is None:
# back to non_distributed execution.
self._worker_endpoints = "127.0.0.1:6170"
self._cur_endpoint = self._worker_endpoints
self._non_distributed = True
self._worker_endpoints = self._worker_endpoints.split(",")
self._trainers_num = len(self._worker_endpoints)
self._nodes_num = len(
set([x.split(':')[0] for x in self._worker_endpoints]))
def _gloo_init(self):
# PADDLE_WITH_GLOO 1: trainer barrier, 2: all barrier
use_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
if use_gloo not in [1, 2]:
return
# PADDLE_GLOO_RENDEZVOUS 1: HDFS 2: FILE 3: HTTP
rendezvous_type = int(os.getenv("PADDLE_GLOO_RENDEZVOUS", "0"))
prefix = os.getenv("SYS_JOB_ID", "")
if rendezvous_type not in [
Gloo.RENDEZVOUS.HDFS, Gloo.RENDEZVOUS.HTTP, Gloo.RENDEZVOUS.FILE
]:
raise ValueError(self._gloo._err_type)
need_init_all = True if use_gloo == 2 else False
if rendezvous_type == Gloo.RENDEZVOUS.HDFS:
dfs_name = os.getenv("PADDLE_GLOO_FS_NAME", "")
dfs_ugi = os.getenv("PADDLE_GLOO_FS_UGI", "")
dfs_path = os.getenv("PADDLE_GLOO_FS_PATH", "")
kwargs = {
"dfs.name": dfs_name,
"dfs.ugi": dfs_ugi,
"dfs.path": dfs_path,
"store.prefix": prefix,
}
elif rendezvous_type == Gloo.RENDEZVOUS.HTTP:
ip = os.getenv("PADDLE_GLOO_HTTP_HOST", "")
port = os.getenv("PADDLE_GLOO_HTTP_PORT", "")
kwargs = {
"http.host": ip,
"http.port": port,
"store.prefix": prefix,
}
else:
dfs_path = os.getenv("PADDLE_GLOO_FS_PATH", "")
kwargs = {
"dfs.path": dfs_path,
"store.prefix": prefix,
}
if rendezvous_type == Gloo.RENDEZVOUS.HDFS:
type = "HDFS"
elif rendezvous_type == Gloo.RENDEZVOUS.HTTP:
type = "HTTP"
else:
type = "FILE"
print("Gloo init with {}: need_init_all: {}, args: {}".format(
type, need_init_all, kwargs))
self._gloo.init(
rendezvous=rendezvous_type,
role=self._role,
role_id=self._role_id(),
worker_num=self._worker_num(),
server_num=self._server_num(),
need_init_all=need_init_all,
kwargs=kwargs)
def _generate_role(self):
"""
generate role for role maker
"""
if not self._role_is_generated:
if not self._is_collective:
self._ps_env()
else:
self._collective_env()
self._role_is_generated = True
self._gloo_init()
class UserDefinedRoleMaker(PaddleCloudRoleMaker):
def __init__(self, is_collective=False, init_gloo=False, **kwargs):
super(UserDefinedRoleMaker, self).__init__(
is_collective=is_collective, init_gloo=init_gloo, **kwargs)
self._init_gloo = init_gloo
def _user_defined_ps_env(self):
self._server_endpoints = self._kwargs.get("server_endpoints")
self._worker_endpoints = self._kwargs.get("worker_endpoints", [])
self._trainers_num = self._kwargs.get("worker_num", 0)
if self._trainers_num == 0:
assert (len(self._worker_endpoints) > 0)
self._trainers_num = len(self._worker_endpoints)
self._role = self._kwargs.get("role")
self._current_id = self._kwargs.get("current_id")
if self._role == Role.WORKER and len(
self._worker_endpoints) > self._current_id:
self._cur_endpoint = self._worker_endpoints[self._current_id]
elif self._role == Role.SERVER:
self._cur_endpoint = self._server_endpoints[self._current_id]
self._nodes_num = len(
set([x.split(':')[0] for x in self._worker_endpoints]))
def _user_defined_collective_env(self):
self._worker_endpoints = self._kwargs.get("worker_endpoints")
self._current_id = self._kwargs.get("current_id")
self._trainers_num = len(self._worker_endpoints)
self._training_role = Role.WORKER
self._nodes_num = len(
set([x.split(':')[0] for x in self._worker_endpoints]))
def _generate_role(self):
"""
generate role for role maker
"""
if not self._role_is_generated:
if not self._is_collective:
self._user_defined_ps_env()
else:
self._user_defined_collective_env()
self._role_is_generated = True