You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
85 lines
3.4 KiB
85 lines
3.4 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/amp/update_loss_scaling_op.h"
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T>
|
|
__global__ void GpuUpdateLossScaling(
|
|
const bool* found_inf_data, const T* pre_loss_scaling_data,
|
|
const int* good_in_data, const int* bad_in_data,
|
|
const int incr_every_n_steps, const int decr_every_n_nan_or_inf,
|
|
const float incr_ratio, const float decr_ratio,
|
|
T* updated_loss_scaling_data, int* good_out_data, int* bad_out_data) {
|
|
Update<T>(found_inf_data, pre_loss_scaling_data, good_in_data, bad_in_data,
|
|
incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio, decr_ratio,
|
|
updated_loss_scaling_data, good_out_data, bad_out_data);
|
|
}
|
|
|
|
template <typename T>
|
|
class UpdateLossScalingFunctor<platform::CUDADeviceContext, T> {
|
|
public:
|
|
void operator()(const platform::CUDADeviceContext& dev_ctx,
|
|
const bool* found_inf_data, const T* pre_loss_scaling_data,
|
|
const int* good_in_data, const int* bad_in_data,
|
|
const int incr_every_n_steps,
|
|
const int decr_every_n_nan_or_inf, const float incr_ratio,
|
|
const float decr_ratio, T* updated_loss_scaling_data,
|
|
int* good_out_data, int* bad_out_data) const {
|
|
GpuUpdateLossScaling<T><<<1, 1, 0, dev_ctx.stream()>>>(
|
|
found_inf_data, pre_loss_scaling_data, good_in_data, bad_in_data,
|
|
incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio, decr_ratio,
|
|
updated_loss_scaling_data, good_out_data, bad_out_data);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class LazyZeroInputs<platform::CUDADeviceContext, T> {
|
|
public:
|
|
void operator()(const platform::CUDADeviceContext& dev_ctx,
|
|
const bool* found_inf_data,
|
|
const std::vector<const framework::Tensor*>& xs,
|
|
const std::vector<framework::Tensor*>& outs) const {
|
|
const auto gpu_place =
|
|
BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace());
|
|
bool has_inf{false};
|
|
memory::Copy(platform::CPUPlace(), &has_inf, gpu_place, found_inf_data,
|
|
sizeof(bool), dev_ctx.stream());
|
|
if (has_inf) {
|
|
VLOG(1) << "-- UpdateLossScaling: Infinite values are found in grads. --";
|
|
for (size_t i = 0; i < xs.size(); ++i) {
|
|
auto* out = outs[i];
|
|
T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
|
|
int num = out->numel();
|
|
cudaMemset(out_data, 0, num * sizeof(T));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
using GPU = paddle::platform::CUDADeviceContext;
|
|
|
|
REGISTER_OP_CUDA_KERNEL(update_loss_scaling,
|
|
ops::UpdateLossScalingKernel<GPU, float>,
|
|
ops::UpdateLossScalingKernel<GPU, double>);
|