You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
4.0 KiB
134 lines
4.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/math/cross_entropy.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace math {
|
|
|
|
namespace {
|
|
template <typename T>
|
|
__global__ void CrossEntropyKernel(T* Y, const T* X, const int64_t* label,
|
|
const int N, const int D) {
|
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
|
|
i += blockDim.x * gridDim.x) {
|
|
PADDLE_ASSERT(label[i] >= 0 && label[i] < D);
|
|
Y[i] = -math::TolerableValue<T>()(log(X[i * D + label[i]]));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__device__ __forceinline__ T sum_single_warp(T val) {
|
|
val += __shfl_down(val, 16);
|
|
val += __shfl_down(val, 8);
|
|
val += __shfl_down(val, 4);
|
|
val += __shfl_down(val, 2);
|
|
val += __shfl_down(val, 1);
|
|
return val;
|
|
}
|
|
|
|
// CUDA do not support dynamic arrary in template
|
|
// https://stackoverflow.com/questions/20497209
|
|
template <typename T>
|
|
struct SharedMemory {
|
|
// Ensure that we won't compile any un-specialized types
|
|
__device__ T* GetPointer() { return NULL; }
|
|
};
|
|
|
|
template <>
|
|
struct SharedMemory<float> {
|
|
__device__ float* GetPointer() {
|
|
extern __shared__ float s_float[];
|
|
return s_float;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct SharedMemory<double> {
|
|
__device__ double* GetPointer() {
|
|
extern __shared__ double s_double[];
|
|
return s_double;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
__global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
|
|
const int class_num) {
|
|
int tid = threadIdx.x;
|
|
SharedMemory<T> d_sum_shared;
|
|
T* d_sum = d_sum_shared.GetPointer();
|
|
d_sum[tid] = 0;
|
|
|
|
int cur_idx = tid;
|
|
int next_idx = blockIdx.x * class_num + tid;
|
|
while (cur_idx < class_num) {
|
|
d_sum[tid] +=
|
|
math::TolerableValue<T>()(std::log(X[next_idx])) * label[next_idx];
|
|
next_idx += blockDim.x;
|
|
cur_idx += blockDim.x;
|
|
}
|
|
__syncthreads();
|
|
|
|
for (unsigned int stride = blockDim.x >> 1; stride >= 32; stride >>= 1) {
|
|
if (tid < stride) d_sum[tid] += d_sum[tid + stride];
|
|
__syncthreads();
|
|
}
|
|
|
|
T val = d_sum[tid];
|
|
val = sum_single_warp<T>(val);
|
|
if (tid == 0) Y[blockIdx.x] = -val;
|
|
}
|
|
} // namespace
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
template <typename T>
|
|
class CrossEntropyFunctor<platform::GPUPlace, T> {
|
|
public:
|
|
void operator()(const platform::DeviceContext& ctx, framework::Tensor* out,
|
|
const framework::Tensor* prob,
|
|
const framework::Tensor* labels, bool softLabel) {
|
|
const T* prob_data = prob->data<T>();
|
|
T* loss_data = out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
int batch_size = prob->dims()[0];
|
|
int class_num = prob->dims()[1];
|
|
|
|
if (softLabel) {
|
|
const T* label_data = labels->data<T>();
|
|
int block = class_num > 512 ? 512 : pow(2, int(std::log2(class_num)));
|
|
|
|
SoftCrossEntropyKernel<T><<<
|
|
batch_size, block, block * sizeof(T),
|
|
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
|
|
loss_data, prob_data, label_data, class_num);
|
|
} else {
|
|
const int64_t* label_data = labels->data<int64_t>();
|
|
int block = 512;
|
|
int grid = (batch_size + block - 1) / block;
|
|
CrossEntropyKernel<T><<<
|
|
grid, block, 0,
|
|
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
|
|
loss_data, prob_data, label_data, batch_size, class_num);
|
|
}
|
|
}
|
|
};
|
|
|
|
template class CrossEntropyFunctor<platform::GPUPlace, float>;
|
|
template class CrossEntropyFunctor<platform::GPUPlace, double>;
|
|
} // namespace math
|
|
} // namespace operators
|
|
} // namespace paddle
|