You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
195 lines
6.7 KiB
195 lines
6.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/math/selected_rows_functor.h"
|
|
#include "gtest/gtest.h"
|
|
#include "paddle/operators/math/math_function.h"
|
|
|
|
TEST(selected_rows_functor, cpu_add) {
|
|
using namespace paddle::framework;
|
|
using namespace paddle::platform;
|
|
using namespace paddle::operators::math;
|
|
|
|
CPUPlace cpu_place;
|
|
CPUDeviceContext ctx(cpu_place);
|
|
SetConstant<CPUPlace, float> functor;
|
|
int64_t height = 10;
|
|
int64_t row_numel = 10;
|
|
|
|
std::vector<int64_t> rows1{0, 4, 7};
|
|
std::unique_ptr<SelectedRows> selected_rows1{new SelectedRows(rows1, height)};
|
|
auto* in1_value = selected_rows1->mutable_value();
|
|
in1_value->mutable_data<float>(
|
|
make_ddim({static_cast<int64_t>(rows1.size()), row_numel}), cpu_place);
|
|
functor(ctx, in1_value, 1.0);
|
|
|
|
std::vector<int64_t> rows2{0, 5, 7, 9};
|
|
std::unique_ptr<SelectedRows> selected_rows2{new SelectedRows(rows2, height)};
|
|
auto* in2_value = selected_rows2->mutable_value();
|
|
in2_value->mutable_data<float>(
|
|
make_ddim({static_cast<int64_t>(rows2.size()), row_numel}), cpu_place);
|
|
functor(ctx, in2_value, 2.0);
|
|
|
|
std::unique_ptr<SelectedRows> output{new SelectedRows()};
|
|
auto* out_value = output->mutable_value();
|
|
|
|
// simplely concat two SelectedRows
|
|
out_value->mutable_data<float>(make_ddim({7, 10}), cpu_place);
|
|
|
|
SelectedRowsAdd<CPUPlace, float> add_functor;
|
|
add_functor(ctx, *selected_rows1, *selected_rows2, output.get());
|
|
|
|
auto out_height = output->height();
|
|
EXPECT_EQ(out_height, height);
|
|
|
|
auto& out_rows = output->rows();
|
|
|
|
// input1 rows
|
|
EXPECT_EQ(out_rows[0], 0);
|
|
EXPECT_EQ(out_rows[1], 4);
|
|
EXPECT_EQ(out_rows[2], 7);
|
|
// input2 rows
|
|
EXPECT_EQ(out_rows[3], 0);
|
|
EXPECT_EQ(out_rows[4], 5);
|
|
EXPECT_EQ(out_rows[5], 7);
|
|
EXPECT_EQ(out_rows[6], 9);
|
|
|
|
auto* out_data = output->value().data<float>();
|
|
// input1 value
|
|
EXPECT_EQ(out_data[0 * row_numel + 0], 1.0);
|
|
EXPECT_EQ(out_data[0 * row_numel + 8], 1.0);
|
|
EXPECT_EQ(out_data[1 * row_numel + 1], 1.0);
|
|
EXPECT_EQ(out_data[2 * row_numel + 6], 1.0);
|
|
// input2 value
|
|
EXPECT_EQ(out_data[3 * row_numel + 3], 2.0);
|
|
EXPECT_EQ(out_data[3 * row_numel + 8], 2.0);
|
|
EXPECT_EQ(out_data[4 * row_numel + 4], 2.0);
|
|
EXPECT_EQ(out_data[5 * row_numel + 7], 2.0);
|
|
EXPECT_EQ(out_data[6 * row_numel + 9], 2.0);
|
|
|
|
std::unique_ptr<Tensor> tensor1{new Tensor()};
|
|
tensor1->mutable_data<float>(make_ddim({height, row_numel}), cpu_place);
|
|
functor(ctx, tensor1.get(), 3.0);
|
|
|
|
std::unique_ptr<Tensor> tensor2{new Tensor()};
|
|
tensor2->mutable_data<float>(make_ddim({height, row_numel}), cpu_place);
|
|
|
|
SelectedRowsAddTensor<CPUPlace, float> add_tensor_functor;
|
|
add_tensor_functor(ctx, *output, *tensor1, tensor2.get());
|
|
|
|
auto* tensor2_data = tensor2->data<float>();
|
|
// row0: 1.0 + 2.0 + 3.0
|
|
EXPECT_EQ(tensor2_data[0 * row_numel + 0], 6.0);
|
|
// row1: 3.0
|
|
EXPECT_EQ(tensor2_data[1 * row_numel + 1], 3.0);
|
|
// row4 : 1.0 + 3.0
|
|
EXPECT_EQ(tensor2_data[4 * row_numel + 6], 4.0);
|
|
// row5: 2.0 + 3.0
|
|
EXPECT_EQ(tensor2_data[5 * row_numel + 7], 5.0);
|
|
// row6: 3.0
|
|
EXPECT_EQ(tensor2_data[6 * row_numel + 1], 3.0);
|
|
// row7: 1.0 + 2.0 + 3.0
|
|
EXPECT_EQ(tensor2_data[7 * row_numel + 3], 6.0);
|
|
// row9: 2.0 + 3.0
|
|
EXPECT_EQ(tensor2_data[9 * row_numel + 6], 5.0);
|
|
}
|
|
|
|
TEST(selected_rows_functor, cpu_add_to) {
|
|
using namespace paddle::framework;
|
|
using namespace paddle::platform;
|
|
using namespace paddle::operators::math;
|
|
|
|
CPUPlace cpu_place;
|
|
CPUDeviceContext ctx(cpu_place);
|
|
SetConstant<CPUPlace, float> functor;
|
|
int64_t height = 10;
|
|
int64_t row_numel = 10;
|
|
|
|
std::vector<int64_t> rows1{0, 4, 7};
|
|
std::unique_ptr<SelectedRows> selected_rows1{new SelectedRows(rows1, height)};
|
|
auto* in1_value = selected_rows1->mutable_value();
|
|
in1_value->mutable_data<float>(
|
|
make_ddim({static_cast<int64_t>(rows1.size()), row_numel}), cpu_place);
|
|
functor(ctx, in1_value, 1.0);
|
|
|
|
std::vector<int64_t> rows2{0, 5, 7, 9};
|
|
std::unique_ptr<SelectedRows> selected_rows2{new SelectedRows(rows2, height)};
|
|
auto* in2_value = selected_rows2->mutable_value();
|
|
in2_value->mutable_data<float>(
|
|
make_ddim({static_cast<int64_t>(rows2.size()), row_numel}), cpu_place);
|
|
functor(ctx, in2_value, 2.0);
|
|
|
|
std::unique_ptr<SelectedRows> output{new SelectedRows()};
|
|
output->set_height(height);
|
|
auto* out_value = output->mutable_value();
|
|
|
|
// simplely concat two SelectedRows
|
|
out_value->mutable_data<float>(make_ddim({7, 10}), cpu_place);
|
|
|
|
SelectedRowsAddTo<CPUPlace, float> add_to_functor;
|
|
add_to_functor(ctx, *selected_rows1, 0, output.get());
|
|
add_to_functor(ctx, *selected_rows2, in1_value->numel(), output.get());
|
|
|
|
auto out_height = output->height();
|
|
EXPECT_EQ(out_height, height);
|
|
|
|
auto& out_rows = output->rows();
|
|
|
|
// input1 rows
|
|
EXPECT_EQ(out_rows[0], 0);
|
|
EXPECT_EQ(out_rows[1], 4);
|
|
EXPECT_EQ(out_rows[2], 7);
|
|
// input2 rows
|
|
EXPECT_EQ(out_rows[3], 0);
|
|
EXPECT_EQ(out_rows[4], 5);
|
|
EXPECT_EQ(out_rows[5], 7);
|
|
EXPECT_EQ(out_rows[6], 9);
|
|
|
|
auto* out_data = output->value().data<float>();
|
|
// input1 value
|
|
EXPECT_EQ(out_data[0 * row_numel + 0], 1.0);
|
|
EXPECT_EQ(out_data[0 * row_numel + 8], 1.0);
|
|
EXPECT_EQ(out_data[1 * row_numel + 1], 1.0);
|
|
EXPECT_EQ(out_data[2 * row_numel + 6], 1.0);
|
|
// input2 value
|
|
EXPECT_EQ(out_data[3 * row_numel + 3], 2.0);
|
|
EXPECT_EQ(out_data[3 * row_numel + 8], 2.0);
|
|
EXPECT_EQ(out_data[4 * row_numel + 4], 2.0);
|
|
EXPECT_EQ(out_data[5 * row_numel + 7], 2.0);
|
|
EXPECT_EQ(out_data[6 * row_numel + 9], 2.0);
|
|
|
|
std::unique_ptr<Tensor> tensor1{new Tensor()};
|
|
tensor1->mutable_data<float>(make_ddim({height, row_numel}), cpu_place);
|
|
functor(ctx, tensor1.get(), 3.0);
|
|
|
|
SelectedRowsAddToTensor<CPUPlace, float> add_to_tensor_functor;
|
|
add_to_tensor_functor(ctx, *output, tensor1.get());
|
|
|
|
auto* tensor1_data = tensor1->data<float>();
|
|
// row0: 1.0 + 2.0 + 3.0
|
|
EXPECT_EQ(tensor1_data[0 * row_numel + 0], 6.0);
|
|
// row1: 3.0
|
|
EXPECT_EQ(tensor1_data[1 * row_numel + 1], 3.0);
|
|
// row4 : 1.0 + 3.0
|
|
EXPECT_EQ(tensor1_data[4 * row_numel + 6], 4.0);
|
|
// row5: 2.0 + 3.0
|
|
EXPECT_EQ(tensor1_data[5 * row_numel + 7], 5.0);
|
|
// row6: 3.0
|
|
EXPECT_EQ(tensor1_data[6 * row_numel + 1], 3.0);
|
|
// row7: 1.0 + 2.0 + 3.0
|
|
EXPECT_EQ(tensor1_data[7 * row_numel + 3], 6.0);
|
|
// row9: 2.0 + 3.0
|
|
EXPECT_EQ(tensor1_data[9 * row_numel + 6], 5.0);
|
|
}
|