You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
76 lines
2.5 KiB
76 lines
2.5 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
import os
|
|
import paddle
|
|
import re
|
|
import paddle.fluid.incubate.data_generator as dg
|
|
|
|
|
|
class IMDBDataset(dg.MultiSlotDataGenerator):
|
|
def load_resource(self, dictfile):
|
|
self._vocab = {}
|
|
wid = 0
|
|
with open(dictfile) as f:
|
|
for line in f:
|
|
self._vocab[line.strip()] = wid
|
|
wid += 1
|
|
self._unk_id = len(self._vocab)
|
|
self._pattern = re.compile(r'(;|,|\.|\?|!|\s|\(|\))')
|
|
self.return_value = ("words", [1, 2, 3, 4, 5, 6]), ("label", [0])
|
|
|
|
def get_words_and_label(self, line):
|
|
send = '|'.join(line.split('|')[:-1]).lower().replace("<br />",
|
|
" ").strip()
|
|
label = [int(line.split('|')[-1])]
|
|
|
|
words = [x for x in self._pattern.split(send) if x and x != " "]
|
|
feas = [
|
|
self._vocab[x] if x in self._vocab else self._unk_id for x in words
|
|
]
|
|
return feas, label
|
|
|
|
def infer_reader(self, infer_filelist, batch, buf_size):
|
|
def local_iter():
|
|
for fname in infer_filelist:
|
|
with open(fname, "r") as fin:
|
|
for line in fin:
|
|
feas, label = self.get_words_and_label(line)
|
|
yield feas, label
|
|
|
|
import paddle
|
|
batch_iter = paddle.batch(
|
|
paddle.reader.shuffle(
|
|
local_iter, buf_size=buf_size),
|
|
batch_size=batch)
|
|
return batch_iter
|
|
|
|
def generate_sample(self, line):
|
|
def memory_iter():
|
|
for i in range(1000):
|
|
yield self.return_value
|
|
|
|
def data_iter():
|
|
feas, label = self.get_words_and_label(line)
|
|
yield ("words", feas), ("label", label)
|
|
|
|
return data_iter
|
|
|
|
|
|
if __name__ == "__main__":
|
|
imdb = IMDBDataset()
|
|
imdb.load_resource("imdb.vocab")
|
|
imdb.run_from_stdin()
|