You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/fused/mkldnn/fusion_rnn_mkldnn.h

230 lines
8.9 KiB

/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace paddle {
namespace operators {
using paddle::framework::LoDTensor;
using paddle::framework::Tensor;
using paddle::platform::CPUDeviceContext;
using paddle::platform::CreateKey;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::MKLDNNMemDesc;
using platform::to_void_cast;
template <typename T, typename T_alg, typename T_out = T>
class RNNMKLDNNHandler : public platform::MKLDNNHandlerT<T, T_alg> {
public:
RNNMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
const platform::MKLDNNDeviceContext& dev_ctx,
const mkldnn::engine mkldnn_engine,
platform::Place cpu_place, const LoDTensor* input,
const Tensor* weight_h, const Tensor* h0,
const bool is_reverse, const int64_t N, const int64_t Ti,
const int64_t IC, const int64_t OC, const int64_t G,
const std::string& unique_name)
: platform::MKLDNNHandlerT<T, T_alg>(
dev_ctx, dev_ctx.GetEngine(), cpu_place,
CreateKey(dev_ctx, unique_name, MKLDNNGetDataType<T>(), Ti)),
N(N),
Ti(Ti),
IC(IC),
OC(OC),
G(G) {
// Create memory key without Ti because weights, bias and h0 memories
// do not depend on Ti size but primitive and input/output memory do
memory_key_ = platform::ExtendKeyWithThreadInfoIfNeeded(
dev_ctx, CreateKey(dev_ctx, unique_name, MKLDNNGetDataType<T>()));
// Is it int8 kernel
const bool is_INT8 = std::is_same<T, uint8_t>::value;
if (is_INT8) {
// Int8 attributes
const float scale_data = ctx.Attr<float>("Scale_data");
const float shift_data = ctx.Attr<float>("Shift_data");
const auto scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");
const int weights_scale_mask =
0 +
(1 << 3) // bit, indicating the unique scales for `g` dim in `ldigo`
+
(1 << 4); // bit, indicating the unique scales for `o` dim in `ldigo`
attr_.set_rnn_data_qparams(scale_data, shift_data);
attr_.set_rnn_weights_qparams(weights_scale_mask, scale_weights);
}
}
bool is_NTC() {
return (platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc()) ==
dnnl::memory::format_tag::ntc);
}
void reorderRNNdata(void* input_data, void* output_data,
std::vector<size_t> lod, const bool is_reverse,
platform::RNNReorderType reorder_type) {
switch (reorder_type) {
// Reorder input memory [WORDS, C] + LoD -> [N, T, C]
case platform::RNNReorderType::PP_NTC: {
auto* input_data_iter = reinterpret_cast<T*>(input_data);
auto* output_data_iter = reinterpret_cast<T*>(output_data);
for (int n = 0; n < N; ++n) {
const auto num_elements = (lod[n + 1] - lod[n]) * IC;
const auto offset = is_reverse ? (Ti * IC - num_elements) : 0;
memcpy(output_data_iter + n * Ti * IC + offset, input_data_iter,
sizeof(T) * num_elements);
input_data_iter += num_elements;
}
} break;
// Reorder input memory [WORDS, C] + LoD -> [T, N, C]
case platform::RNNReorderType::PP_TNC: {
auto* input_data_iter = reinterpret_cast<T*>(input_data);
auto* output_data_iter = reinterpret_cast<T*>(output_data);
for (int n = 0; n < N; ++n) {
const auto num_elements = (lod[n + 1] - lod[n]);
const auto offset = is_reverse ? (Ti - num_elements) : 0;
for (size_t t = 0; t < num_elements; ++t) {
memcpy(output_data_iter + (t + offset) * N * IC + n * IC,
input_data_iter, sizeof(T) * IC);
input_data_iter += IC;
}
}
} break;
// Reorder output values to PP format [N, T, C] -> [WORDS, C]
case platform::RNNReorderType::NTC_PP: {
auto* input_data_iter = reinterpret_cast<T_out*>(input_data);
auto* output_data_iter = reinterpret_cast<T_out*>(output_data);
for (int n = 0; n < N; ++n) {
const auto num_elements = (lod[n + 1] - lod[n]) * OC;
const auto offset = is_reverse ? (Ti * OC - num_elements) : 0;
memcpy(output_data_iter, input_data_iter + n * Ti * OC + offset,
sizeof(T_out) * num_elements);
output_data_iter += num_elements;
}
} break;
// Reorder output values to PP format [T, N, C] -> [WORDS, C]
case platform::RNNReorderType::TNC_PP: {
auto* input_data_iter = reinterpret_cast<T_out*>(input_data);
auto* output_data_iter = reinterpret_cast<T_out*>(output_data);
for (int n = 0; n < N; ++n) {
const auto num_elements = lod[n + 1] - lod[n];
const auto offset = is_reverse ? (Ti - num_elements) : 0;
for (size_t t = 0; t < num_elements; ++t) {
memcpy(output_data_iter,
input_data_iter + (t + offset) * N * OC + n * OC,
sizeof(T_out) * OC);
output_data_iter += OC;
}
}
} break;
}
}
std::shared_ptr<dnnl::memory> AcquireInputMemoryWithReorder(
const LoDTensor* input, const bool is_reverse) {
const auto name = this->key_ + "@input_mem";
auto memory_p =
std::static_pointer_cast<dnnl::memory>(this->dev_ctx_.GetBlob(name));
if (!memory_p) {
memory_p = std::make_shared<dnnl::memory>(this->fwd_pd_->src_desc(),
this->engine_);
this->dev_ctx_.SetBlob(name, memory_p);
}
const auto& input_lod = input->lod()[0];
auto* x_data = to_void_cast(input->data<T>());
auto* x_onednn_data = memory_p->get_data_handle();
memset(x_onednn_data, 0, sizeof(T) * N * Ti * IC);
if (platform::GetMKLDNNFormat(this->fwd_pd_->src_desc()) ==
dnnl::memory::format_tag::ntc) {
reorderRNNdata(x_data, x_onednn_data, input_lod, is_reverse,
platform::RNNReorderType::PP_NTC);
} else {
reorderRNNdata(x_data, x_onednn_data, input_lod, is_reverse,
platform::RNNReorderType::PP_TNC);
}
return memory_p;
}
std::shared_ptr<dnnl::memory> AcquireOutputMemory() {
const auto name = this->key_ + "@output_mem";
auto memory_p =
std::static_pointer_cast<dnnl::memory>(this->dev_ctx_.GetBlob(name));
if (!memory_p) {
memory_p = std::make_shared<dnnl::memory>(this->fwd_pd_->dst_desc(),
this->engine_);
this->dev_ctx_.SetBlob(name, memory_p);
}
return memory_p;
}
// TODO(grygielski) H0 is for now persistable
// TODO(jczaja) H0 should be updated each iter and of T type (Fusion pass does
// not support in yet)
std::shared_ptr<dnnl::memory> AcquireH0Memory(const Tensor* h0) {
const std::string h0_key = memory_key_ + "@h0";
auto memory_p =
std::static_pointer_cast<dnnl::memory>(this->dev_ctx_.GetBlob(h0_key));
if (!memory_p) {
auto user_h0_memory = dnnl::memory();
if (h0) {
user_h0_memory =
dnnl::memory({{1, 1, N, OC},
MKLDNNGetDataType<float>(),
MKLDNNMemoryFormat::ldnc},
this->engine_, to_void_cast(h0->data<float>()));
} else {
user_h0_memory = dnnl::memory({{1, 1, N, OC},
MKLDNNGetDataType<float>(),
MKLDNNMemoryFormat::ldnc},
this->engine_);
memset(user_h0_memory.get_data_handle(), 0, sizeof(float) * N * OC);
}
memory_p = std::make_shared<dnnl::memory>(this->fwd_pd_->src_iter_desc(),
this->engine_);
dnnl::stream astream(this->engine_);
dnnl::reorder(user_h0_memory, *memory_p, attr_)
.execute(astream, user_h0_memory, *memory_p);
this->dev_ctx_.SetBlob(h0_key, memory_p);
}
return memory_p;
}
protected:
// RNN dimensions
// N - Batch Size
// Ti - Max sentence length
// IC - Input Channels
// OC - Output Channels
// G - Number of gates
const int64_t N, Ti, IC, OC, G;
// Memory size of weights, bias and h0 does not depend
// on Ti size, thus we need another key to cache them
std::string memory_key_;
dnnl::primitive_attr attr_;
};
} // namespace operators
} // namespace paddle