You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
88 lines
3.1 KiB
88 lines
3.1 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
class Scope;
|
|
namespace proto {
|
|
class OpDesc;
|
|
} // namespace proto
|
|
} // namespace framework
|
|
} // namespace paddle
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace tensorrt {
|
|
|
|
/*
|
|
* PadOp.
|
|
*/
|
|
class PadOpConverter : public OpConverter {
|
|
public:
|
|
void operator()(const framework::proto::OpDesc& op,
|
|
const framework::Scope& scope, bool test_mode) override {
|
|
VLOG(3) << "convert a fluid transpose op to tensorrt tranpose layer";
|
|
|
|
framework::OpDesc op_desc(op, nullptr);
|
|
// Declare inputs
|
|
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
|
|
|
|
const std::vector<int> paddings =
|
|
BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
|
|
const float pad_value =
|
|
BOOST_GET_CONST(float, op_desc.GetAttr("pad_value"));
|
|
|
|
nvinfer1::Dims input_shape = input->getDimensions();
|
|
int nbDims = input_shape.nbDims;
|
|
int pad_size = static_cast<int>(paddings.size());
|
|
PADDLE_ENFORCE_GE(
|
|
nbDims, 2,
|
|
platform::errors::InvalidArgument(
|
|
"Input X[0]'s dimension should greater than or equal to 2. "
|
|
"But received %d.",
|
|
nbDims));
|
|
PADDLE_ENFORCE_EQ(
|
|
(nbDims + 1) * 2, pad_size,
|
|
platform::errors::InvalidArgument("Input X[0]'s dimension(nbDims for "
|
|
"short) should meet the condition:"
|
|
"(nbDims + 1) * 2 == pad_size. But "
|
|
"received nbDims:%d, pad_size:%d.",
|
|
nbDims, pad_size));
|
|
PADDLE_ENFORCE_EQ(pad_value, 0.0,
|
|
platform::errors::InvalidArgument(
|
|
"The pad layer of TRT only support zero."));
|
|
|
|
nvinfer1::DimsHW pre_pad(paddings[pad_size - 4], paddings[pad_size - 2]);
|
|
nvinfer1::DimsHW post_pad(paddings[pad_size - 3], paddings[pad_size - 1]);
|
|
|
|
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Padding,
|
|
*const_cast<nvinfer1::ITensor*>(input),
|
|
pre_pad, post_pad);
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(layer,
|
|
platform::errors::External(
|
|
"add padding layer to tensorrt engine error"));
|
|
auto output_name = op_desc.Output("Out")[0];
|
|
RreplenishLayerAndOutput(layer, "pad", {output_name}, test_mode);
|
|
}
|
|
};
|
|
|
|
} // namespace tensorrt
|
|
} // namespace inference
|
|
} // namespace paddle
|
|
|
|
REGISTER_TRT_OP_CONVERTER(pad, PadOpConverter);
|