You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
147 lines
4.8 KiB
147 lines
4.8 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace tensorrt {
|
|
namespace plugin {
|
|
|
|
class ElementWisePlugin : public PluginTensorRT {
|
|
public:
|
|
ElementWisePlugin(std::string type, nvinfer1::Dims const& dims_x,
|
|
nvinfer1::Dims const& dims_y, int axis)
|
|
: type_(type),
|
|
dims_x_(dims_x),
|
|
dims_y_(dims_y),
|
|
axis_(axis),
|
|
prev_size_(1),
|
|
midd_size_(1),
|
|
post_size_(1) {}
|
|
|
|
ElementWisePlugin(void const* serial_data, size_t serial_length) {
|
|
deserializeBase(serial_data, serial_length);
|
|
const char* elementwise_type;
|
|
DeserializeValue(&serial_data, &serial_length, &elementwise_type);
|
|
type_ = std::string(elementwise_type);
|
|
DeserializeValue(&serial_data, &serial_length, &axis_);
|
|
DeserializeValue(&serial_data, &serial_length, &dims_x_);
|
|
DeserializeValue(&serial_data, &serial_length, &dims_y_);
|
|
}
|
|
|
|
ElementWisePlugin* clone() const override {
|
|
// return new ElementWisePlugin(dims_x_, dims_y_, axis_);
|
|
return nullptr;
|
|
}
|
|
|
|
const char* getPluginType() const override { return "elementwise_plugin"; }
|
|
|
|
nvinfer1::Dims getOutputDimensions(int index,
|
|
const nvinfer1::Dims* input_dims,
|
|
int num_inputs) override;
|
|
|
|
int initialize() override;
|
|
|
|
// execute the layer
|
|
int enqueue(int batch_size, const void* const* inputs, void** outputs,
|
|
void* workspace, cudaStream_t stream);
|
|
|
|
protected:
|
|
size_t getSerializationSize() override {
|
|
return SerializedSize(getPluginType()) + SerializedSize(axis_) +
|
|
SerializedSize(dims_x_) + SerializedSize(dims_y_) +
|
|
getBaseSerializationSize();
|
|
}
|
|
|
|
void serialize(void* buffer) override {
|
|
SerializeValue(&buffer, getPluginType());
|
|
serializeBase(buffer);
|
|
SerializeValue(&buffer, type_.c_str());
|
|
SerializeValue(&buffer, axis_);
|
|
SerializeValue(&buffer, dims_x_);
|
|
SerializeValue(&buffer, dims_y_);
|
|
}
|
|
|
|
std::string type_;
|
|
nvinfer1::Dims dims_x_;
|
|
nvinfer1::Dims dims_y_;
|
|
int axis_;
|
|
int prev_size_;
|
|
int midd_size_;
|
|
int post_size_;
|
|
};
|
|
|
|
#if IS_TRT_VERSION_GE(6000)
|
|
class ElementwisePluginDynamic : public DynamicPluginTensorRT {
|
|
public:
|
|
explicit ElementwisePluginDynamic(const std::string& type, int axis)
|
|
: type_(type), axis_(axis) {}
|
|
ElementwisePluginDynamic(void const* serialData, size_t serialLength) {}
|
|
nvinfer1::IPluginV2DynamicExt* clone() const override {
|
|
return new ElementwisePluginDynamic(type_, axis_);
|
|
}
|
|
|
|
const char* getPluginType() const override { return "elementwise_plugin"; }
|
|
int getNbOutputs() const override { return 1; }
|
|
int initialize() override;
|
|
|
|
size_t getSerializationSize() const override;
|
|
void serialize(void* buffer) const override;
|
|
|
|
nvinfer1::DimsExprs getOutputDimensions(
|
|
int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
|
|
nvinfer1::IExprBuilder& expr_builder) override;
|
|
|
|
bool supportsFormatCombination(int pos,
|
|
const nvinfer1::PluginTensorDesc* inOut,
|
|
int nbInputs, int nbOutputs) override;
|
|
|
|
void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
|
|
int nbInputs,
|
|
const nvinfer1::DynamicPluginTensorDesc* out,
|
|
int nbOutputs) override {}
|
|
|
|
size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
|
|
int nbInputs,
|
|
const nvinfer1::PluginTensorDesc* outputs,
|
|
int nbOutputs) const override {
|
|
return 0;
|
|
}
|
|
|
|
int enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
|
|
const nvinfer1::PluginTensorDesc* outputDesc,
|
|
const void* const* inputs, void* const* outputs, void* workspace,
|
|
cudaStream_t stream) override;
|
|
nvinfer1::DataType getOutputDataType(int index,
|
|
const nvinfer1::DataType* inputTypes,
|
|
int nbInputs) const override;
|
|
|
|
void destroy() override { delete this; }
|
|
|
|
private:
|
|
std::string type_;
|
|
int axis_;
|
|
};
|
|
#endif
|
|
|
|
} // namespace plugin
|
|
} // namespace tensorrt
|
|
} // namespace inference
|
|
} // namespace paddle
|