You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
6.2 KiB
169 lines
6.2 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <cassert>
|
|
#include <vector>
|
|
|
|
#include "glog/logging.h"
|
|
#include "paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h"
|
|
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
|
|
#include "paddle/fluid/operators/math/prelu.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace tensorrt {
|
|
namespace plugin {
|
|
|
|
PReluPlugin *CreatePreluPluginDeserialize(const void *buffer, size_t length) {
|
|
return new PReluPlugin(buffer, length);
|
|
}
|
|
REGISTER_TRT_PLUGIN("prelu_plugin", CreatePreluPluginDeserialize);
|
|
|
|
int PReluPlugin::initialize() {
|
|
cudaMalloc(&p_gpu_weight_, sizeof(float) * weight_.size());
|
|
cudaMemcpy(p_gpu_weight_, weight_.data(), weight_.size() * sizeof(float),
|
|
cudaMemcpyHostToDevice);
|
|
return 0;
|
|
}
|
|
|
|
nvinfer1::Dims PReluPlugin::getOutputDimensions(int index,
|
|
const nvinfer1::Dims *inputDims,
|
|
int nbInputs) {
|
|
assert(nbInputs == 1);
|
|
assert(index < this->getNbOutputs());
|
|
nvinfer1::Dims const &input_dims = inputDims[0];
|
|
nvinfer1::Dims output_dims = input_dims;
|
|
return output_dims;
|
|
}
|
|
|
|
int PReluPlugin::enqueue(int batch_size, const void *const *inputs,
|
|
void **outputs, void *workspace, cudaStream_t stream) {
|
|
// input dims is CHW.
|
|
const auto &input_dims = this->getInputDims(0);
|
|
const float *input = reinterpret_cast<const float *>(inputs[0]);
|
|
// const float *alpha = reinterpret_cast<const float *>(alpha_.get().values);
|
|
const float *alpha = p_gpu_weight_;
|
|
float *output = reinterpret_cast<float **>(outputs)[0];
|
|
int numel = 1;
|
|
for (int i = 0; i < input_dims.nbDims; i++) {
|
|
numel *= input_dims.d[i];
|
|
}
|
|
|
|
if (mode_ == "channel") {
|
|
operators::math::PreluChannelWiseDirectCUDAFunctor<float>
|
|
prelu_channel_wise;
|
|
prelu_channel_wise(stream, input, alpha, output, input_dims.d[0],
|
|
input_dims.d[1], numel);
|
|
} else if (mode_ == "element") {
|
|
operators::math::PreluElementWiseDirectCUDAFunctor<float>
|
|
prelu_element_wise;
|
|
prelu_element_wise(stream, input, alpha, output, input_dims.d[0], numel);
|
|
} else {
|
|
operators::math::PreluScalarDirectCUDAFunctor<float> prelu_scalar;
|
|
prelu_scalar(stream, input, alpha, output, numel);
|
|
}
|
|
return cudaGetLastError() != cudaSuccess;
|
|
}
|
|
|
|
#if IS_TRT_VERSION_GE(6000)
|
|
|
|
void PReluPluginDynamic::terminate() {
|
|
if (p_gpu_weight_) {
|
|
cudaFree(p_gpu_weight_);
|
|
}
|
|
}
|
|
|
|
int PReluPluginDynamic::initialize() {
|
|
cudaMalloc(&p_gpu_weight_, sizeof(float) * weight_.size());
|
|
cudaMemcpy(p_gpu_weight_, weight_.data(), weight_.size() * sizeof(float),
|
|
cudaMemcpyHostToDevice);
|
|
return 0;
|
|
}
|
|
size_t PReluPluginDynamic::getSerializationSize() const { return 0; }
|
|
|
|
void PReluPluginDynamic::serialize(void *buffer) const {}
|
|
|
|
nvinfer1::DimsExprs PReluPluginDynamic::getOutputDimensions(
|
|
int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
|
|
nvinfer1::IExprBuilder &expr_builder) {
|
|
return inputs[0];
|
|
}
|
|
|
|
bool PReluPluginDynamic::supportsFormatCombination(
|
|
int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
|
|
int nb_outputs) {
|
|
PADDLE_ENFORCE_NOT_NULL(
|
|
in_out, platform::errors::InvalidArgument(
|
|
"The input of swish plugin shoule not be nullptr."));
|
|
|
|
PADDLE_ENFORCE_LT(
|
|
pos, nb_inputs + nb_outputs,
|
|
platform::errors::InvalidArgument("The pos(%d) should be less than the "
|
|
"num(%d) of the input and the output.",
|
|
pos, nb_inputs + nb_outputs));
|
|
(in_out && pos < (nb_inputs + nb_outputs));
|
|
|
|
return ((in_out[pos].type == nvinfer1::DataType::kFLOAT) &&
|
|
in_out[pos].format == nvinfer1::PluginFormat::kNCHW);
|
|
}
|
|
|
|
nvinfer1::DataType PReluPluginDynamic::getOutputDataType(
|
|
int index, const nvinfer1::DataType *input_types, int nb_inputs) const {
|
|
PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
|
|
"The PRelu Plugin only has one input, so the "
|
|
"index value should be 0, but get %d.",
|
|
index));
|
|
PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT), true,
|
|
platform::errors::InvalidArgument(
|
|
"The input type should be half or float"));
|
|
return input_types[0];
|
|
}
|
|
|
|
int PReluPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
|
|
const nvinfer1::PluginTensorDesc *output_desc,
|
|
const void *const *inputs, void *const *outputs,
|
|
void *workspace, cudaStream_t stream) {
|
|
auto input_dims = input_desc[0].dims;
|
|
const float *alpha = p_gpu_weight_;
|
|
const float *input = static_cast<const float *>(inputs[0]);
|
|
float *output = static_cast<float *>(outputs[0]);
|
|
int numel = 1;
|
|
for (int i = 0; i < input_dims.nbDims; i++) {
|
|
numel *= input_dims.d[i];
|
|
}
|
|
|
|
if (mode_ == "channel") {
|
|
operators::math::PreluChannelWiseDirectCUDAFunctor<float>
|
|
prelu_channel_wise;
|
|
prelu_channel_wise(stream, input, alpha, output, input_dims.d[0],
|
|
input_dims.d[1], numel);
|
|
} else if (mode_ == "element") {
|
|
operators::math::PreluElementWiseDirectCUDAFunctor<float>
|
|
prelu_element_wise;
|
|
prelu_element_wise(stream, input, alpha, output, input_dims.d[0], numel);
|
|
} else {
|
|
operators::math::PreluScalarDirectCUDAFunctor<float> prelu_scalar;
|
|
prelu_scalar(stream, input, alpha, output, numel);
|
|
}
|
|
return cudaGetLastError() != cudaSuccess;
|
|
}
|
|
#endif
|
|
|
|
} // namespace plugin
|
|
} // namespace tensorrt
|
|
} // namespace inference
|
|
} // namespace paddle
|