You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tensorrt/plugin/split_op_plugin.cu

280 lines
10 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cuda_fp16.h>
#include <algorithm>
#include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
SplitPlugin* CreateSplitPluginDeserialize(const void* buffer, size_t length) {
return new SplitPlugin(buffer, length);
}
REGISTER_TRT_PLUGIN("split_plugin", CreateSplitPluginDeserialize);
template <typename T>
__device__ int upper_bound(T const* vals, int n, T const& key) {
int i = 0;
while (n > 0) {
int m = n / 2;
int j = i + m;
if (!(key < vals[j])) {
i = j + 1;
n -= m + 1;
} else {
n = m;
}
}
return i;
}
nvinfer1::Dims SplitPlugin::getOutputDimensions(
int index, const nvinfer1::Dims* input_dims, int num_inputs) {
PADDLE_ENFORCE_EQ(num_inputs, 1,
platform::errors::InvalidArgument(
"Invalid number of inputs of split TRT plugin. "
"Expected 1, received %d.",
num_inputs));
PADDLE_ENFORCE_LT(
index, this->getNbOutputs(),
platform::errors::InvalidArgument(
"Index of output should be less than the total number of outputs in "
"split TensorRT plugin. Received index = %d >= total outputs = %d",
index, this->getNbOutputs()));
nvinfer1::Dims output_dims = input_dims[0];
output_dims.d[axis_] = output_length_.at(index);
return output_dims;
}
int SplitPlugin::initialize() {
PADDLE_ENFORCE_LE(axis_, nvinfer1::Dims::MAX_DIMS,
platform::errors::InvalidArgument(
"Axis dimension exceeds max dimension in TensorRT. "
"Received axis = %d > MAX_DIMS = %d",
axis_, nvinfer1::Dims::MAX_DIMS));
// notice input dims is [C, H, W]
nvinfer1::Dims dims = this->getInputDims(0);
outer_rows_ = 1;
inner_cols_ = 1;
for (int i = 0; i < axis_; ++i) {
outer_rows_ *= dims.d[i];
}
for (int i = axis_ + 1; i < dims.nbDims; ++i) {
inner_cols_ *= dims.d[i];
}
same_shape_ = true;
std::vector<int> segment_offsets(1, 0);
for (int i = 0; i < this->getNbOutputs(); ++i) {
if (output_length_[i] != output_length_[0]) {
same_shape_ = false;
}
segment_offsets.push_back(segment_offsets.back() + output_length_[i]);
}
axis_shape_ = dims.d[axis_];
d_segment_offsets_ = segment_offsets;
segment_offsets_ = std::move(segment_offsets);
d_output_ptrs_.resize(this->getNbOutputs(), nullptr);
return 0;
}
// The following part of the code refers to onnx-tensorrt
// https://github.com/onnx/onnx-tensorrt/blob/master/Split.cu
template <typename T>
__global__ void split_kernel(int nsegment,
int const* __restrict__ segment_offsets,
T const* __restrict__ idata, T* const* odatas,
int inner_cols, int axis_shape, int outer_rows) {
int x0 = threadIdx.x + blockIdx.x * blockDim.x;
int src_y0 = threadIdx.y + blockIdx.y * blockDim.y;
int z0 = threadIdx.z + blockIdx.z * blockDim.z;
for (int z = z0; z < outer_rows; z += blockDim.z * gridDim.z) {
for (int src_y = src_y0; src_y < axis_shape;
src_y += blockDim.y * gridDim.y) {
for (int x = x0; x < inner_cols; x += blockDim.x * gridDim.x) {
int segment = upper_bound(segment_offsets, nsegment, src_y) - 1;
int dst_y = src_y - segment_offsets[segment];
int dst_ny = segment_offsets[segment + 1] - segment_offsets[segment];
odatas[segment][x + inner_cols * (dst_y + dst_ny * z)] =
idata[x + inner_cols * (src_y + axis_shape * z)];
}
}
}
}
int SplitPlugin::enqueue(int batchSize, const void* const* inputs,
void** outputs, void* workspace, cudaStream_t stream) {
const int* d_segment_offsets_ptr =
thrust::raw_pointer_cast(&d_segment_offsets_[0]);
float const* input_ptr = reinterpret_cast<float const*>(inputs[0]);
float* const* h_odatas = reinterpret_cast<float* const*>(outputs);
float** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs_[0]);
PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemcpyAsync(
output_ptrs, h_odatas, d_output_ptrs_.size() * sizeof(float*),
cudaMemcpyHostToDevice, stream));
int outer_rows = outer_rows_ * batchSize;
dim3 block(32, 16);
dim3 grid(std::min((inner_cols_ - 1) / block.x + 1, 65535u),
std::min((axis_shape_ - 1) / block.y + 1, 65535u),
std::min((outer_rows_ - 1) / block.z + 1, 65535u));
split_kernel<<<grid, block, 0, stream>>>(
d_segment_offsets_.size(), d_segment_offsets_ptr, input_ptr, output_ptrs,
inner_cols_, axis_shape_, outer_rows);
return cudaGetLastError() != cudaSuccess;
}
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
int SplitPluginDynamic::initialize() { return 0; }
size_t SplitPluginDynamic::getSerializationSize() const { return 0; }
void SplitPluginDynamic::serialize(void* buffer) const {}
nvinfer1::DimsExprs SplitPluginDynamic::getOutputDimensions(
int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
nvinfer1::IExprBuilder& expr_builder) {
PADDLE_ENFORCE_EQ(nb_inputs, 1,
platform::errors::InvalidArgument(
"The Split plugin should be only one input."));
PADDLE_ENFORCE_LT(output_index, output_length_.size(),
platform::errors::InvalidArgument(
"When GetOutputDimensions, the index(%d) should not "
"greater the num(%d) of the outpus.",
output_index, output_length_.size()));
nvinfer1::DimsExprs output_dims = inputs[0];
output_dims.d[axis_] = expr_builder.constant(output_length_.at(output_index));
return output_dims;
}
bool SplitPluginDynamic::supportsFormatCombination(
int pos, const nvinfer1::PluginTensorDesc* in_out, int nb_inputs,
int nb_outputs) {
PADDLE_ENFORCE_NOT_NULL(
in_out, platform::errors::InvalidArgument(
"The input of split plugin should not be nullptr."));
PADDLE_ENFORCE_LT(
pos, nb_inputs + nb_outputs,
platform::errors::InvalidArgument("The pos(%d) should be less than the "
"num(%d) of the input and the output.",
pos, nb_inputs + nb_outputs));
(in_out && pos < (nb_inputs + nb_outputs));
const nvinfer1::PluginTensorDesc& in = in_out[pos];
if (pos == 0) {
#ifdef SUPPORTS_CUDA_FP16
return (in.type == nvinfer1::DataType::kFLOAT ||
in.type == nvinfer1::DataType::kHALF) &&
(in.format == nvinfer1::TensorFormat::kLINEAR);
#else
return (in.type == nvinfer1::DataType::kFLOAT) &&
(in.format == nvinfer1::TensorFormat::kLINEAR);
#endif
}
const nvinfer1::PluginTensorDesc& prev = in_out[pos - 1];
// output
return in.type == prev.type && in.format == prev.format;
}
nvinfer1::DataType SplitPluginDynamic::getOutputDataType(
int index, const nvinfer1::DataType* input_types, int nb_inputs) const {
return input_types[0];
}
int SplitPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc* input_desc,
const nvinfer1::PluginTensorDesc* output_desc,
const void* const* inputs, void* const* outputs,
void* workspace, cudaStream_t stream) {
auto input_dims = input_desc[0].dims;
int outer_rows = 1;
int inner_cols = 1;
// with batch
for (int i = 0; i < axis_; i++) {
outer_rows *= input_dims.d[i];
}
for (int i = axis_ + 1; i < input_dims.nbDims; i++) {
inner_cols *= input_dims.d[i];
}
std::vector<int> segment_offsets(1, 0);
for (int i = 0; i < this->getNbOutputs(); i++) {
segment_offsets.push_back(segment_offsets.back() + output_length_[i]);
}
int axis_shape = input_dims.d[axis_];
thrust::device_vector<int> d_segment_offsets = segment_offsets;
const int* d_segment_offsets_ptr =
thrust::raw_pointer_cast(&d_segment_offsets[0]);
dim3 block(32, 16);
dim3 grid(std::min((inner_cols - 1) / block.x + 1, 65535u),
std::min((axis_shape - 1) / block.y + 1, 65535u),
std::min((outer_rows - 1) / block.z + 1, 65535u));
auto input_type = input_desc[0].type;
if (input_type == nvinfer1::DataType::kFLOAT) {
thrust::device_vector<float*> d_output_ptrs;
d_output_ptrs.resize(this->getNbOutputs(), nullptr);
const float* input_ptr = static_cast<const float*>(inputs[0]);
float* const* h_odatas = reinterpret_cast<float* const*>(outputs);
float** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs[0]);
PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemcpyAsync(
output_ptrs, h_odatas, d_output_ptrs.size() * sizeof(float*),
cudaMemcpyHostToDevice, stream));
split_kernel<<<grid, block, 0, stream>>>(
d_segment_offsets.size(), d_segment_offsets_ptr, input_ptr, output_ptrs,
inner_cols, axis_shape, outer_rows);
} else if (input_type == nvinfer1::DataType::kHALF) {
#ifdef SUPPORTS_CUDA_FP16
thrust::device_vector<half*> d_output_ptrs;
d_output_ptrs.resize(this->getNbOutputs(), nullptr);
const half* input_ptr = static_cast<const half*>(inputs[0]);
half* const* h_odatas = reinterpret_cast<half* const*>(outputs);
half** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs[0]);
PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemcpyAsync(
output_ptrs, h_odatas, d_output_ptrs.size() * sizeof(half*),
cudaMemcpyHostToDevice, stream));
split_kernel<<<grid, block, 0, stream>>>(
d_segment_offsets.size(), d_segment_offsets_ptr, input_ptr, output_ptrs,
inner_cols, axis_shape, outer_rows);
#else
PADDLE_THROW(platform::errors::Fatal(
"The cuda archs you specific should greater than 600."));
#endif
}
return cudaGetLastError() != cudaSuccess;
}
#endif
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle