You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
4.6 KiB
136 lines
4.6 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <thrust/device_vector.h>
|
|
#include <utility>
|
|
#include <vector>
|
|
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace tensorrt {
|
|
namespace plugin {
|
|
|
|
class SplitPlugin : public PluginTensorRT {
|
|
public:
|
|
SplitPlugin() {}
|
|
SplitPlugin(int axis, std::vector<int> const& output_lengths)
|
|
: axis_(axis), same_shape_(true), output_length_(output_lengths) {}
|
|
|
|
SplitPlugin(void const* serial_data, size_t serial_length) {
|
|
deserializeBase(serial_data, serial_length);
|
|
DeserializeValue(&serial_data, &serial_length, &axis_);
|
|
DeserializeValue(&serial_data, &serial_length, &output_length_);
|
|
}
|
|
|
|
SplitPlugin* clone() const override {
|
|
return new SplitPlugin(axis_, output_length_);
|
|
}
|
|
|
|
const char* getPluginType() const override { return "split_plugin"; }
|
|
int getNbOutputs() const override { return output_length_.size(); }
|
|
nvinfer1::Dims getOutputDimensions(int index,
|
|
const nvinfer1::Dims* input_dims,
|
|
int num_inputs) override;
|
|
|
|
int initialize() override;
|
|
int enqueue(int batchSize, const void* const* inputs, void** outputs,
|
|
void* workspace, cudaStream_t stream) override;
|
|
|
|
protected:
|
|
size_t getSerializationSize() override {
|
|
return SerializedSize(getPluginType()) + SerializedSize(axis_) +
|
|
SerializedSize(output_length_) + getBaseSerializationSize();
|
|
}
|
|
|
|
void serialize(void* buffer) override {
|
|
SerializeValue(&buffer, getPluginType());
|
|
serializeBase(buffer);
|
|
SerializeValue(&buffer, axis_);
|
|
SerializeValue(&buffer, output_length_);
|
|
}
|
|
|
|
int axis_;
|
|
int outer_rows_;
|
|
int inner_cols_;
|
|
int axis_shape_;
|
|
bool same_shape_;
|
|
std::vector<int> output_length_;
|
|
std::vector<int> segment_offsets_;
|
|
thrust::device_vector<int> d_segment_offsets_;
|
|
thrust::device_vector<float*> d_output_ptrs_;
|
|
};
|
|
|
|
#if IS_TRT_VERSION_GE(6000)
|
|
class SplitPluginDynamic : public DynamicPluginTensorRT {
|
|
public:
|
|
SplitPluginDynamic(int axis, std::vector<int> const& output_lengths)
|
|
: axis_(axis), output_length_(output_lengths) {}
|
|
|
|
SplitPluginDynamic(void const* serial_data, size_t serial_length) {}
|
|
|
|
nvinfer1::IPluginV2DynamicExt* clone() const override {
|
|
return new SplitPluginDynamic(axis_, output_length_);
|
|
}
|
|
|
|
const char* getPluginType() const override { return "split_plugin"; }
|
|
int getNbOutputs() const override { return output_length_.size(); }
|
|
int initialize() override;
|
|
|
|
size_t getSerializationSize() const override;
|
|
void serialize(void* buffer) const override;
|
|
|
|
nvinfer1::DimsExprs getOutputDimensions(
|
|
int outputIndex, const nvinfer1::DimsExprs* inputs, int nbInputs,
|
|
nvinfer1::IExprBuilder& exprBuilder) override;
|
|
|
|
bool supportsFormatCombination(int pos,
|
|
const nvinfer1::PluginTensorDesc* inOut,
|
|
int nbInputs, int nbOutputs) override;
|
|
|
|
void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
|
|
int nbInputs,
|
|
const nvinfer1::DynamicPluginTensorDesc* out,
|
|
int nbOutputs) override {}
|
|
|
|
size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
|
|
int nbInputs,
|
|
const nvinfer1::PluginTensorDesc* outputs,
|
|
int nbOutputs) const override {
|
|
return 0;
|
|
}
|
|
|
|
int enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
|
|
const nvinfer1::PluginTensorDesc* outputDesc,
|
|
const void* const* inputs, void* const* outputs, void* workspace,
|
|
cudaStream_t stream) override;
|
|
nvinfer1::DataType getOutputDataType(int index,
|
|
const nvinfer1::DataType* inputTypes,
|
|
int nbInputs) const override;
|
|
|
|
void destroy() override { delete this; }
|
|
|
|
private:
|
|
int axis_;
|
|
std::vector<int> output_length_;
|
|
};
|
|
#endif
|
|
|
|
} // namespace plugin
|
|
} // namespace tensorrt
|
|
} // namespace inference
|
|
} // namespace paddle
|