You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tensorrt/plugin/stack_op_plugin.cu

248 lines
8.6 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cassert>
#include <cstring>
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/stack_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
#if IS_TRT_VERSION_GE(6000)
StackPluginDynamic::StackPluginDynamic(int axis, int num_stack)
: axis_(axis), num_stack_(num_stack) {}
StackPluginDynamic::StackPluginDynamic(void const* serial_data,
size_t serial_length) {
DeserializeValue(&serial_data, &serial_length, &axis_);
DeserializeValue(&serial_data, &serial_length, &num_stack_);
}
StackPluginDynamic::~StackPluginDynamic() {}
nvinfer1::IPluginV2DynamicExt* StackPluginDynamic::clone() const {
return new StackPluginDynamic(axis_, num_stack_);
}
const char* StackPluginDynamic::getPluginType() const { return "stack_plugin"; }
int StackPluginDynamic::getNbOutputs() const { return 1; }
int StackPluginDynamic::initialize() { return 0; }
size_t StackPluginDynamic::getSerializationSize() const {
size_t serialize_size = 0;
serialize_size += SerializedSize(axis_);
serialize_size += SerializedSize(num_stack_);
return serialize_size;
}
void StackPluginDynamic::serialize(void* buffer) const {
SerializeValue(&buffer, axis_);
SerializeValue(&buffer, num_stack_);
}
nvinfer1::DimsExprs StackPluginDynamic::getOutputDimensions(
int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
nvinfer1::IExprBuilder& expr_builder) {
nvinfer1::DimsExprs output(inputs[0]);
output.nbDims = inputs[0].nbDims + 1;
for (int i = inputs[0].nbDims; i > axis_; --i) {
output.d[i] = inputs[0].d[i - 1];
}
output.d[axis_] = expr_builder.constant(nb_inputs);
return output;
}
void StackPluginDynamic::configurePlugin(
const nvinfer1::DynamicPluginTensorDesc* in, int nbInputs,
const nvinfer1::DynamicPluginTensorDesc* out, int nbOutputs) {}
size_t StackPluginDynamic::getWorkspaceSize(
const nvinfer1::PluginTensorDesc* inputs, int nbInputs,
const nvinfer1::PluginTensorDesc* outputs, int nbOutputs) const {
return num_stack_ * sizeof(uintptr_t);
}
void StackPluginDynamic::destroy() { delete this; }
void StackPluginDynamic::terminate() {}
bool StackPluginDynamic::supportsFormatCombination(
int pos, const nvinfer1::PluginTensorDesc* in_out, int nb_inputs,
int nb_outputs) {
PADDLE_ENFORCE_NOT_NULL(
in_out, platform::errors::InvalidArgument(
"The input of stack plugin should not be nullptr."));
PADDLE_ENFORCE_LT(
pos, nb_inputs + nb_outputs,
platform::errors::InvalidArgument("The pos(%d) should be less than the "
"num(%d) of the input and the output.",
pos, nb_inputs + nb_outputs));
const nvinfer1::PluginTensorDesc& in = in_out[pos];
if (pos == 0) {
#ifdef SUPPORTS_CUDA_FP16
return (in.type == nvinfer1::DataType::kFLOAT ||
in.type == nvinfer1::DataType::kHALF) &&
(in.format == nvinfer1::TensorFormat::kLINEAR);
#else
return (in.type == nvinfer1::DataType::kFLOAT) &&
(in.format == nvinfer1::TensorFormat::kLINEAR);
#endif
}
const nvinfer1::PluginTensorDesc& prev = in_out[pos - 1];
// output
return in.type == prev.type && in.format == prev.format;
}
nvinfer1::DataType StackPluginDynamic::getOutputDataType(
int index, const nvinfer1::DataType* input_types, int nb_inputs) const {
PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
"The index should be equal to 0"));
return input_types[0];
}
template <typename T>
__global__ void StackKernel(const T* const* input, T* output, int num_stack,
int base_unit) {
int stack_id = blockIdx.x;
int lead_id = blockIdx.y;
for (int i = threadIdx.x; i < base_unit; i += blockDim.x) {
output[lead_id * num_stack * base_unit + stack_id * base_unit + i] =
input[stack_id][lead_id * base_unit + i];
}
}
int StackPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc* input_desc,
const nvinfer1::PluginTensorDesc* output_desc,
const void* const* inputs, void* const* outputs,
void* workspace, cudaStream_t stream) {
auto input_dims = input_desc[0].dims; // (batch, seq, seq)
auto out_dims = output_desc[0].dims; // (batch, num_head, seq, seq)
auto out_num_dims = out_dims.nbDims;
int base_unit = 1;
for (int i = axis_ + 1; i < out_num_dims; ++i) {
PADDLE_ENFORCE_GT(out_dims.d[i], 0,
platform::errors::InvalidArgument(
"Input dimensions should be greater than 0"));
base_unit *= out_dims.d[i];
}
int lead_unit = 1;
for (int i = 0; i < axis_; ++i) {
PADDLE_ENFORCE_GT(out_dims.d[i], 0,
platform::errors::InvalidArgument(
"Input dimensions should be greater than 0"));
lead_unit *= out_dims.d[i];
}
PADDLE_ENFORCE_EQ(
out_dims.d[axis_], num_stack_,
platform::errors::InvalidArgument("number of stack axis should be same"));
cudaMemcpyAsync(workspace, reinterpret_cast<const void* const>(inputs),
sizeof(void*) * out_dims.d[axis_], cudaMemcpyHostToDevice,
stream);
const int num_stacks = out_dims.d[axis_];
dim3 num_blocks(num_stacks, lead_unit);
const int num_threads = 256;
auto infer_type = input_desc[0].type;
if (infer_type == nvinfer1::DataType::kFLOAT) {
float* output = static_cast<float*>(outputs[0]);
StackKernel<float><<<num_blocks, num_threads, 0, stream>>>(
reinterpret_cast<const float* const*>(workspace), output, num_stacks,
base_unit);
} else if (infer_type == nvinfer1::DataType::kHALF) {
#ifdef SUPPORTS_CUDA_FP16
__half* output = static_cast<__half*>(outputs[0]);
StackKernel<__half><<<num_blocks, num_threads, 0, stream>>>(
reinterpret_cast<const __half* const*>(workspace), output, num_stacks,
base_unit);
#else
PADDLE_THROW(platform::errors::Fatal(
"The cuda archs you specific should greater than 600."));
#endif
} else {
PADDLE_THROW(
platform::errors::Fatal("The Stack TRT Plugin's input type only "
"support float or half currently."));
}
return cudaGetLastError() != cudaSuccess;
}
StackPluginDynamicCreator::StackPluginDynamicCreator() {}
const char* StackPluginDynamicCreator::getPluginName() const {
return "stack_plugin";
}
const char* StackPluginDynamicCreator::getPluginVersion() const { return "1"; }
const nvinfer1::PluginFieldCollection*
StackPluginDynamicCreator::getFieldNames() {
return &field_collection_;
}
nvinfer1::IPluginV2* StackPluginDynamicCreator::createPlugin(
const char* name, const nvinfer1::PluginFieldCollection* fc) {
int axis = -1;
int num_stack = -1;
for (int i = 0; i < fc->nbFields; ++i) {
const std::string name(fc->fields[i].name);
if (name == "axis") {
axis = static_cast<const int*>(fc->fields[i].data)[0];
} else if (name == "num_stack") {
num_stack = static_cast<const int*>(fc->fields[i].data)[0];
} else {
PADDLE_THROW(platform::errors::Fatal("Meet an unknown plugin field '" +
name +
"' when creating stack op plugin."));
}
}
return new StackPluginDynamic(axis, num_stack);
}
nvinfer1::IPluginV2* StackPluginDynamicCreator::deserializePlugin(
const char* name, const void* serial_data, size_t serial_length) {
auto plugin = new StackPluginDynamic(serial_data, serial_length);
return plugin;
}
void StackPluginDynamicCreator::setPluginNamespace(const char* lib_namespace) {
plugin_namespace_ = lib_namespace;
}
const char* StackPluginDynamicCreator::getPluginNamespace() const {
return plugin_namespace_.c_str();
}
#endif
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle