You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tensorrt/plugin/trt_plugin.cc

62 lines
2.2 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
void PluginTensorRT::serializeBase(void*& buffer) {
SerializeValue(&buffer, input_dims_);
SerializeValue(&buffer, max_batch_size_);
SerializeValue(&buffer, data_type_);
SerializeValue(&buffer, data_format_);
}
void PluginTensorRT::deserializeBase(void const*& serial_data,
size_t& serial_length) {
DeserializeValue(&serial_data, &serial_length, &input_dims_);
DeserializeValue(&serial_data, &serial_length, &max_batch_size_);
DeserializeValue(&serial_data, &serial_length, &data_type_);
DeserializeValue(&serial_data, &serial_length, &data_format_);
}
size_t PluginTensorRT::getBaseSerializationSize() {
return (SerializedSize(input_dims_) + SerializedSize(max_batch_size_) +
SerializedSize(data_type_) + SerializedSize(data_format_));
}
bool PluginTensorRT::supportsFormat(nvinfer1::DataType type,
nvinfer1::PluginFormat format) const {
return ((type == nvinfer1::DataType::kFLOAT) &&
(format == nvinfer1::PluginFormat::kNCHW));
}
void PluginTensorRT::configureWithFormat(
const nvinfer1::Dims* input_dims, int num_inputs,
const nvinfer1::Dims* output_dims, int num_outputs, nvinfer1::DataType type,
nvinfer1::PluginFormat format, int max_batch_size) {
data_type_ = type;
data_format_ = format;
input_dims_.assign(input_dims, input_dims + num_inputs);
max_batch_size_ = max_batch_size;
}
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle