You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
4.8 KiB
151 lines
4.8 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
|
|
|
DEFINE_bool(disable_mkldnn_fc, false, "Disable usage of MKL-DNN's FC op");
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace analysis {
|
|
|
|
void SetConfig(AnalysisConfig *cfg) {
|
|
cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
|
|
cfg->DisableGpu();
|
|
cfg->SwitchIrOptim();
|
|
cfg->SwitchSpecifyInputNames();
|
|
cfg->SetCpuMathLibraryNumThreads(FLAGS_cpu_num_threads);
|
|
}
|
|
|
|
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
|
|
SetFakeImageInput(inputs, FLAGS_infer_model);
|
|
}
|
|
|
|
void SetOptimConfig(AnalysisConfig *cfg) {
|
|
std::string optimModelPath = FLAGS_infer_model + "/saved_optim_model";
|
|
cfg->SetModel(optimModelPath + "/model", optimModelPath + "/params");
|
|
cfg->DisableGpu();
|
|
cfg->SwitchIrOptim();
|
|
cfg->SwitchSpecifyInputNames();
|
|
cfg->SetCpuMathLibraryNumThreads(FLAGS_cpu_num_threads);
|
|
}
|
|
|
|
// Easy for profiling independently.
|
|
void profile(bool use_mkldnn = false) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
if (use_mkldnn) {
|
|
cfg.EnableMKLDNN();
|
|
if (!FLAGS_disable_mkldnn_fc)
|
|
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
|
|
}
|
|
std::vector<std::vector<PaddleTensor>> outputs;
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all, &outputs, FLAGS_num_threads);
|
|
}
|
|
|
|
TEST(Analyzer_resnet50, profile) { profile(); }
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
TEST(Analyzer_resnet50, profile_mkldnn) { profile(true /* use_mkldnn */); }
|
|
#endif
|
|
|
|
// Check the fuse status
|
|
TEST(Analyzer_resnet50, fuse_statis) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
int num_ops;
|
|
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
|
|
auto fuse_statis = GetFuseStatis(
|
|
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
|
|
LOG(INFO) << "num_ops: " << num_ops;
|
|
}
|
|
|
|
// Compare result of NativeConfig and AnalysisConfig
|
|
void compare(bool use_mkldnn = false) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
if (use_mkldnn) {
|
|
cfg.EnableMKLDNN();
|
|
if (!FLAGS_disable_mkldnn_fc)
|
|
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
|
|
}
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareNativeAndAnalysis(
|
|
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
|
|
}
|
|
|
|
TEST(Analyzer_resnet50, compare) { compare(); }
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
TEST(Analyzer_resnet50, compare_mkldnn) { compare(true /* use_mkldnn */); }
|
|
#endif
|
|
|
|
// Compare Deterministic result
|
|
TEST(Analyzer_resnet50, compare_determine) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
input_slots_all);
|
|
}
|
|
|
|
// Save optim model
|
|
TEST(Analyzer_resnet50, save_optim_model) {
|
|
AnalysisConfig cfg;
|
|
std::string optimModelPath = FLAGS_infer_model + "/saved_optim_model";
|
|
#ifdef _WIN32
|
|
_mkdir(optimModelPath.c_str());
|
|
#else
|
|
mkdir(optimModelPath.c_str(), 0777);
|
|
#endif
|
|
SetConfig(&cfg);
|
|
SaveOptimModel(&cfg, optimModelPath);
|
|
}
|
|
|
|
void CompareOptimAndOrig(const PaddlePredictor::Config *orig_config,
|
|
const PaddlePredictor::Config *optim_config,
|
|
const std::vector<std::vector<PaddleTensor>> &inputs) {
|
|
PrintConfig(orig_config, true);
|
|
PrintConfig(optim_config, true);
|
|
std::vector<std::vector<PaddleTensor>> orig_outputs, optim_outputs;
|
|
TestOneThreadPrediction(orig_config, inputs, &orig_outputs, false);
|
|
TestOneThreadPrediction(optim_config, inputs, &optim_outputs, false);
|
|
CompareResult(orig_outputs.back(), optim_outputs.back());
|
|
}
|
|
|
|
TEST(Analyzer_resnet50, compare_optim_orig) {
|
|
AnalysisConfig orig_cfg;
|
|
AnalysisConfig optim_cfg;
|
|
SetConfig(&orig_cfg);
|
|
SetOptimConfig(&optim_cfg);
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareOptimAndOrig(
|
|
reinterpret_cast<const PaddlePredictor::Config *>(&orig_cfg),
|
|
reinterpret_cast<const PaddlePredictor::Config *>(&optim_cfg),
|
|
input_slots_all);
|
|
}
|
|
|
|
} // namespace analysis
|
|
} // namespace inference
|
|
} // namespace paddle
|